MPpredictor: An Artificial Intelligence-Driven Web Tool for Composition-Based Material Property Prediction

被引:10
|
作者
Gupta, Vishu [1 ]
Choudhary, Kamal [2 ,3 ,4 ]
Mao, Yuwei [1 ]
Wang, Kewei [1 ]
Tavazza, Francesca [2 ]
Campbell, Carelyn [2 ]
Liao, Wei-keng [1 ]
Choudhary, Alok [1 ]
Agrawal, Ankit [1 ]
机构
[1] Northwestern Univ, ECE Dept, Evanston, IL 60208 USA
[2] NIST, Mat Measurement Lab, Gaithersburg, MD 20899 USA
[3] Theiss Res, La Jolla, CA 92037 USA
[4] DeepMaterials LLC, Silver Spring, MD 20906 USA
关键词
MATERIALS INFORMATICS;
D O I
10.1021/acs.jcim.3c00307
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
The applications of artificial intelligence, machine learning, and deep learning techniques in the field of materials science are becoming increasingly common due to their promising abilities to extract and utilize data-driven information from available data and accelerate materials discovery and design for future applications. In an attempt to assist with this process, we deploy predictive models for multiple material properties, given the composition of the material. The deep learning models described here are built using a cross-property deep transfer learning technique, which leverages source models trained on large data sets to build target models on small data sets with different properties. We deploy these models in an online software tool that takes a number of material compositions as input, performs preprocessing to generate composition-based attributes for each material, and feeds them into the predictive models to obtain up to 41 different material property values. The material property predictor is available online at http://ai.eecs.northwestern.edu/MPpredictor.
引用
收藏
页码:1865 / 1871
页数:7
相关论文
共 50 条
  • [1] An artificial intelligence-driven support tool for prediction of urine culture test results
    Dedeene, Lieselot
    Van Elslande, Jan
    Dewitte, Jannes
    Martens, Geert
    De Laere, Emmanuel
    De Jaeger, Peter
    De Smet, Dieter
    [J]. CLINICA CHIMICA ACTA, 2024, 562
  • [2] Artificial intelligence-driven prediction of multiple drug interactions
    Chen, Siqi
    Li, Tiancheng
    Yang, Luna
    Zhai, Fei
    Jiang, Xiwei
    Xiang, Rongwu
    Ling, Guixia
    [J]. BRIEFINGS IN BIOINFORMATICS, 2022, 23 (06)
  • [3] Artificial Intelligence-Driven Composition and Security Validation of an Internet of Things Ecosystem
    Hatzivasilis, George
    Papadakis, Nikos
    Hatzakis, Ilias
    Ioannidis, Sotiris
    Vardakis, George
    [J]. APPLIED SCIENCES-BASEL, 2020, 10 (14):
  • [4] OdoriFy: A conglomerate of artificial intelligence-driven prediction engines for olfactory decoding
    Gupta, Ria
    Mittal, Aayushi
    Agrawal, Vishesh
    Gupta, Sushant
    Gupta, Krishan
    Jain, Rishi Raj
    Garg, Prakriti
    Mohanty, Sanjay Kumar
    Sogani, Riya
    Chhabra, Harshit Singh
    Gautam, Vishakha
    Mishra, Tripti
    Sengupta, Debarka
    Ahuja, Gaurav
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2021, 297 (02)
  • [5] Artificial intelligence-driven novel tool for tooth detection and segmentation on panoramic radiographs
    André Ferreira Leite
    Adriaan Van Gerven
    Holger Willems
    Thomas Beznik
    Pierre Lahoud
    Hugo Gaêta-Araujo
    Myrthel Vranckx
    Reinhilde Jacobs
    [J]. Clinical Oral Investigations, 2021, 25 : 2257 - 2267
  • [6] Artificial intelligence-driven novel tool for tooth detection and segmentation on panoramic radiographs
    Leite, Andre Ferreira
    Van Gerven, Adriaan
    Willems, Holger
    Beznik, Thomas
    Lahoud, Pierre
    Gaeta-Araujo, Hugo
    Vranckx, Myrthel
    Jacobs, Reinhilde
    [J]. CLINICAL ORAL INVESTIGATIONS, 2021, 25 (04) : 2257 - 2267
  • [7] Forecasting FSW Material's Behavior using an Artificial Intelligence-Driven Approach
    Dorbane, Abdelhakim
    Harrou, Fouzi
    Sun, Ying
    [J]. 2022 INTERNATIONAL CONFERENCE ON DECISION AID SCIENCES AND APPLICATIONS (DASA), 2022, : 1553 - 1557
  • [8] Artificial Intelligence-Driven Mammography-Based Future Breast Cancer Risk Prediction: A Systematic Review
    Schopf, Cody M.
    Ramwala, Ojas A.
    Lowry, Kathryn P.
    Hofvind, Solveig
    Marinovich, M. Luke
    Houssami, Nehmat
    Elmore, Joann G.
    Dontchos, Brian N.
    Lee, Janie M.
    Lee, Christoph I.
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY, 2024, 21 (02) : 319 - 328
  • [9] ARTIFICIAL INTELLIGENCE-DRIVEN FOG-COMPUTING-BASED RADIO ACCESS NETWORKS
    Mugen Peng
    Jie Zhang
    Shuai Han
    Zhiyong Chen
    Chonggang Wang
    [J]. China Communications, 2019, 16 (11) : 5 - 6
  • [10] Artificial Intelligence-Driven Mechanism for Edge Computing-Based Industrial Applications
    Sodhro, Ali Hassan
    Pirbhulal, Sandeep
    de Albuquerque, Victor Hugo C.
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2019, 15 (07) : 4235 - 4243