Quasi Three-Dimensional Tetragonal SiC Polymorphs as Efficient Anodes for Sodium-Ion Batteries

被引:11
|
作者
Abbas, Ghulam [1 ,3 ]
Johansson, Gustav [1 ]
Alay-e-Abbas, Syed Muhammad [1 ,2 ]
Shi, Yijun [3 ]
Larsson, J. Andreas [1 ]
机构
[1] Lulea Univ Technol, Dept Engn Sci & Math, Appl Phys, Div Mat Sci, S-97187 Lulea, Sweden
[2] Govt Coll Univ, Dept Phys, Computat Mat Modeling Lab, Faisalabad 38040, Pakistan
[3] Lulea Univ Technol, Div Machine Elements, S-97187 Lulea, Sweden
基金
瑞典研究理事会;
关键词
SiC polymorphs; Na-ion battery; anode material; density functional theory; firstprinciples; ELECTRON LOCALIZATION; SILICON; LI; 1ST-PRINCIPLES; SILAGRAPHENE; MONOLAYER; SODIATION; POINTS;
D O I
10.1021/acsaem.3c01703
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the present work, we investigate, for the first time, quasi 3D porous tetragonal silicon-carbon polymorphs t(SiC)(12) and t(SiC)(20) on the basis of first-principles density functional theory calculations. The structural design of these q3-t(SiC)(12) and q3-t(SiC)(20) polymorphs follows an intuitive rational approach based on armchair nanotubes of a tetragonal SiC monolayer where C-C and Si-Si bonds are arranged in a paired configuration for retaining a 1:1 ratio of the two elements. Our calculations uncover that q3-t(SiC)(12) and q3-t(SiC)(20) polymorphs are thermally, dynamically, and mechanically stable with this lattice framework. The results demonstrate that the smaller polymorph q3-t(SiC)(12) shows a small band gap (similar to 0.59 eV), while the larger polymorph of q3-t(SiC)(20) displays a Dirac nodal line semimetal. Moreover, the 1D channels are favorable for accommodating Na ions with excellent (>300 mAh g(-1)) reversible theoretical capacities. Thus confirming potential suitability of the two porous polymorphs with an appropriate average voltage and vanishingly small volume change (<6%) as anodes for Na-ion batteries.
引用
收藏
页码:8976 / 8988
页数:13
相关论文
共 50 条
  • [1] Three-dimensional porous graphene anodes for sodium-ion batteries
    Mace, Annsley
    Montalvo, Melisa
    Lu, Yang
    Wujcik, Evan K.
    Jeon, Ju-Won
    FUNCTIONAL MATERIALS LETTERS, 2020, 13 (01)
  • [2] Constructing three-dimensional architectures to design advanced anodes materials for sodium-ion batteries: from nanoscale to microscale
    Sun, Yu-Feng
    Li, Yu
    Gong, Yu-Teng
    Qiu, Zhi-Xu
    Qian, Ji
    Bai, Ying
    Wang, Zi-Lu
    Zhang, Ri-Peng
    Wu, Chuan
    ENERGY MATERIALS, 2024, 4 (01):
  • [3] Two-dimensional materials as anodes for sodium-ion batteries
    Chang, Y-M
    Lin, H-W
    Li, L-J
    Chen, H-Y
    MATERIALS TODAY ADVANCES, 2020, 6
  • [4] Alloy anodes for sodium-ion batteries
    Shu-Min Zheng
    Yan-Ru Tian
    Ya-Xia Liu
    Shuang Wang
    Chao-Quan Hu
    Bao Wang
    Kai-Ming Wang
    Rare Metals, 2021, 40 : 272 - 289
  • [5] Alloy anodes for sodium-ion batteries
    Shu-Min Zheng
    Yan-Ru Tian
    Ya-Xia Liu
    Shuang Wang
    Chao-Quan Hu
    Bao Wang
    Kai-Ming Wang
    RareMetals, 2021, 40 (02) : 272 - 289
  • [6] Developing anodes for sodium-ion batteries
    Scott, Alex
    CHEMICAL & ENGINEERING NEWS, 2021, 99 (08) : 12 - 12
  • [7] Alloy anodes for sodium-ion batteries
    Zheng, Shu-Min
    Tian, Yan-Ru
    Liu, Ya-Xia
    Wang, Shuang
    Hu, Chao-Quan
    Wang, Bao
    Wang, Kai-Ming
    RARE METALS, 2021, 40 (02) : 272 - 289
  • [8] Bulk Alloy Anodes for Sodium-Ion Batteries
    Wang, Xiaohan
    Zhao, Xiaoying
    Wang, Liubin
    BATTERIES & SUPERCAPS, 2024,
  • [9] Isomers of terephthalate derivatives as anodes for sodium-ion batteries
    Tang, Mei
    Jia, Kangkang
    Ma, Guandie
    Wu, Fei
    Xiang, Yunjie
    Li, Qiulin
    Chen, Qianwei
    Luo, Yuansheng
    Xu, Maowen
    Bao, Shu-Juan
    INORGANIC CHEMISTRY FRONTIERS, 2024, 11 (16): : 5103 - 5110
  • [10] Nano Hard Carbon Anodes for Sodium-Ion Batteries
    Kim, Dae-Yeong
    Kim, Dong-Hyun
    Kim, Soo-Hyun
    Lee, Eun-Kyung
    Park, Sang-Kyun
    Lee, Ji-Woong
    Yun, Yong-Sup
    Choi, Si-Young
    Kang, Jun
    NANOMATERIALS, 2019, 9 (05)