Numerical study on hydrogen and thermal storage performance of a sandwich reaction bed filled with metal hydride and thermochemical material

被引:9
|
作者
Chang, H. [1 ]
Tao, Y. B. [1 ]
Ye, H. [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Energy & Power Engn, Key Lab Thermo Fluid Sci & Engn, Minist Educ, Xian 710049, Shaanxi, Peoples R China
关键词
Metal hydride; Thermochemical materials; Hydrogen storage; Heat transfer enhancement; FUEL-CELL; MG(OH)(2); AMMONIA; ENERGY; MGH2; TANK;
D O I
10.1016/j.ijhydene.2023.02.063
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hydrogen storage and release process of metal hydride (MH) accompany with large amount of reaction heat. The thermal management is very important to improve the compre-hensive performance of hydrogen storage unit. In present paper, thermochemical material (TCM) is used to storage and release the reaction heat, and a new sandwich configuration reaction bed of MH-TCM system was proposed and its superior hydrogen and thermal storage performance were numerically validated. Firstly, the optimum TCM distribution with a volume ratio (TCM in inner layer to total) of 0.4 was derived for the sandwich Then, comparisons between the sandwich reaction bed and the traditional reaction were performed. The results show that the sandwich MH-TCM system has faster transfer and reaction rate due to its larger heat transfer area and smaller thermal resis-tance, which results in the hydrogen storage time is shortened by 61.1%. The heat transfer in the reaction beds have significant effects on performance of MH-TCM systems. Increasing the thermal conductivity of the reaction beds can further reduce the hydrogen storage time. Moreover, improving the hydrogen inflation pressure can result in higher equilibrium temperature, which is beneficial for the enhancing heat transfer and hydrogen absorption rates.& COPY; 2023 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:20006 / 20019
页数:14
相关论文
共 50 条
  • [1] Performance Study of Metal Hydride Hydrogen Storage Based on Thermochemical Heat Storage
    Chang, Hao
    Tao, Yubing
    [J]. Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2024, 45 (02): : 500 - 505
  • [2] Thermal performance analysis of a metal hydride reactor encircled by a phase change material sandwich bed
    Alqahtani, Talal
    Mellouli, Sofiene
    Bamasag, Ahmad
    Askri, Faouzi
    Phelan, Patrick E.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (43) : 23076 - 23092
  • [3] Numerical Study of Hydrogen Desorption in an Innovative Metal Hydride Hydrogen Storage Tank
    Zhuo, Yuting
    Jung, Siwoo
    Shen, Yansong
    [J]. ENERGY & FUELS, 2021, 35 (13) : 10908 - 10917
  • [4] Thermal transport of charging/discharging for hydrogen storage in a metal hydride reactor coupled with thermochemical heat storage materials
    Shi, T.
    Xu, H. J.
    Ke, H. B.
    Zhao, C. Y.
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2022, 273
  • [5] COMPUTATIONAL STUDY OF HYDROGEN STORAGE PERFORMANCE IN METAL HYDRIDE REACTORS
    Chung, Chih-Ang
    Lin, Ci-Siang
    Ho, Ci-Jyun
    [J]. PROCEEDINGS OF THE ASME 10TH BIENNIAL CONFERENCE ON ENGINEERING SYSTEMS DESIGN AND ANALYSIS, 2010, VOL 1, 2010, : 19 - 23
  • [6] An experimental study of employing organic phase change material for thermal management of metal hydride hydrogen storage
    Nguyen, Huy Quoc
    Mourshed, Monjur
    Paul, Biddyut
    Shabani, Bahman
    [J]. JOURNAL OF ENERGY STORAGE, 2022, 55
  • [7] Parametric optimization of coupled fin-metal foam metal hydride bed towards enhanced hydrogen absorption performance of metal hydride hydrogen storage device
    Bai, Xiao-Shuai
    Yang, Wei-Wei
    Tang, Xin-Yuan
    Dai, Zhou-Qiao
    Yang, Fu-Sheng
    [J]. ENERGY, 2022, 243
  • [8] The Effect of Magnetic Field on Thermal-Reaction Kinetics of a Paramagnetic Metal Hydride Storage Bed
    Shafiee, Shahin
    McCay, Mary Helen
    Kuravi, Sarada
    [J]. APPLIED SCIENCES-BASEL, 2017, 7 (10):
  • [9] Numerical analysis and performance assessment of metal hydride-based hydrogen storage systems
    Gambini, M.
    Manno, M.
    Vellini, M.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (21) : 6178 - 6187
  • [10] Numerical simulation on the storage performance of a phase change materials based metal hydride hydrogen storage tank
    Ye, Yang
    Lu, Jianfeng
    Ding, Jing
    Wang, Weilong
    Yan, Jinyue
    [J]. APPLIED ENERGY, 2020, 278