The Fekete-Szego spacing diaeresis functional and the Hankel determinant for a certain class of analytic functions involving the Hohlov operator

被引:22
|
作者
Srivastava, Hari Mohan [1 ,2 ,3 ,4 ]
Shaba, Timilehin Gideon [5 ]
Murugusundaramoorthy, Gangadharan [6 ]
Wanas, Abbas Kareem [7 ]
Oros, Georgia Irina [8 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[2] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[3] Azerbaijan Univ, Dept Math & Informat, 71 Jeyhun Hajibeyli St, Baku 1007, Azerbaijan
[4] Int Telemat Univ Uninettuno, Sect Math, I-00186 Rome, Italy
[5] Univ Ilorin, Dept Math, PMB 1515, Ilorin, Kwara, Nigeria
[6] VIT Univ, Dept Math, Vellore 632014, Tamil Nadu, India
[7] Univ Al Qadisiyah, Dept Math, Al-Qadisiyah, Al Diwaniyah, Iraq
[8] Univ Oradea, Dept Math & Comp Sci, Oradea 410087, Romania
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 01期
关键词
analytic functions; univalent functions; coefficient bounds; Fekete-Szego functional; Hohlov operator; Dziok-Srivastava operator; Srivastava-Wright operator; Fekete-Szego inequality; Hankel determinant; basic q-calculus; (p; q)-variation; TO-CONVEX FUNCTIONS; COEFFICIENT INEQUALITY; STARLIKE FUNCTIONS; UNIVALENT; RESPECT; SUBCLASSES; CALCULUS;
D O I
10.3934/math.2023016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce and study a new subclass of normalized functions that are analytic and univalent in the open unit disk U = {z : z is an element of C and vertical bar z vertical bar < 1}, which satisfies the following geometric criterion: R(L-u,v(w) f(z)/z (1 - e(-2i phi) mu(2)z(2))e(i phi)) > 0 where z is an element of U, 0 <= mu <= 1 and phi is an element of (-pi/2, pi/2), and which is associated with the Hohlov operator L-u,v(w). For functions in this class, the coe fficient bounds, as well as upper estimates for the Fekete-Szego functional and the Hankel determinant, are investigated.
引用
收藏
页码:340 / 360
页数:21
相关论文
共 50 条
  • [1] Hankel determinants, Fekete-Szego inequality, and estimates of initial <spacing diaeresis> coefficients for certain subclasses of analytic functions
    Hu, Wenzheng
    Deng, Jian
    AIMS MATHEMATICS, 2024, 9 (03): : 6445 - 6467
  • [2] The Fekete-Szego spacing diaeresis Estimates for a New Class of Analytic Functions Associated With the Convolution
    Soni, Amit
    Mishra, Ambuj Kumar
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2023, 41
  • [3] The Fekete-Szego Theorem for a Certain Class of Analytic Functions
    Al-Abbadi, Ma'Moun Harayzeh
    Darus, Maslina
    SAINS MALAYSIANA, 2011, 40 (04): : 385 - 389
  • [4] Fekete-Szego and Hankel inequalities for certain class of analytic functions related to the sine function
    Tang, Huo
    Murugusundaramoorthy, Gangadharan
    Li, Shu-Hai
    Ma, Li-Na
    AIMS MATHEMATICS, 2022, 7 (04): : 6365 - 6380
  • [5] Fekete-Szego Problem and Upper Bound of Second Hankel Determinant for a New Class of Analytic Functions
    Bansal, Deepak
    KYUNGPOOK MATHEMATICAL JOURNAL, 2014, 54 (03): : 443 - 452
  • [6] Fekete-Szego Type Coefficient Inequalities for Certain Subclasses of Analytic Functions Involving Salagean Operator
    Darwish, Hanan
    Lashin, Abdel Moneim
    Soileh, Suliman
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2016, 48 (02): : 65 - 80
  • [7] Fekete-Szego problem for a class of analytic functions
    Kumar, S. Sivaprasad
    Kumar, Virendra
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2013, 58 (02): : 181 - 188
  • [8] The Fekete-Szego Problem for a Class of Analytic Functions
    Yusoff, Nik Nadhilah Nik Mohd
    Darus, Maslina
    13TH IMT-GT INTERNATIONAL CONFERENCE ON MATHEMATICS, STATISTICS AND THEIR APPLICATIONS (ICMSA2017), 2017, 1905
  • [9] FEKETE-SZEGO PROBLEM FOR CERTAIN SUBCLASSES OF ANALYTIC FUNCTIONS
    Orhan, Halit
    Deniz, Erhan
    Caglar, Murat
    DEMONSTRATIO MATHEMATICA, 2012, 45 (04) : 835 - 846
  • [10] Fekete-Szego Problem and Second Hankel Determinant for a Class of Bi-Univalent Functions Involving Euler Polynomials
    Riaz, Sadia
    Shaba, Timilehin Gideon
    Xin, Qin
    Tchier, Fairouz
    Khan, Bilal
    Malik, Sarfraz Nawaz
    FRACTAL AND FRACTIONAL, 2023, 7 (04)