Photonic antichiral edge states induced by magnetic surface plasmon resonance

被引:0
|
作者
Wu, Huabing [1 ,2 ]
Xu, Kai [1 ]
Shi, Yuancheng [1 ]
Chen, Ping [1 ]
Poo, Yin [1 ]
Liu, Shiyang [2 ]
Wu, Rui-Xin [1 ]
机构
[1] Nanjing Univ, Sch Elect Sci & Engn, Nanjing 210023, Peoples R China
[2] Zhejiang Normal Univ, Key Lab Opt Informat Detecting & Display Technol, Jinhua 321004, Peoples R China
基金
中国国家自然科学基金;
关键词
TOPOLOGICAL INSULATORS; SCATTERING; REALIZATION; MODEL;
D O I
10.1063/5.0174435
中图分类号
O59 [应用物理学];
学科分类号
摘要
Chiral edge states are a hallmark feature of photonic Chern insulators, where waves propagate in opposite directions along two parallel edges of a strip sample. Different from the chiral edge states, at recently discovered counterintuitive antichiral edge states, where waves propagate in the same direction on the two edges, the antichiral edge states are modeled by the modified Haldane model. Here, we theoretically propose, experimentally observe the antichiral edge states induced by magnetic surface plasmon resonance, and realize the antichiral edge states in a gyromagnetic photonic crystal with rectangular lattice. Through microwave experiments and photonic band calculations, the unique properties of this antichiral edge states have been confirmed, including edge dispersion without Dirac points frequencies shift, unidirectional transmission without ancillary cladding, and the operating frequency of the edge states that can be flexibly controlled by the external magnetic field. These results extend the scope of antichiral edge states and supplement the current understanding of antichiral edge states.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Observation of Photonic Antichiral Edge States
    Zhou, Peiheng
    Liu, Gui-Geng
    Yang, Yihao
    Hu, Yuan-Hang
    Ma, Sulin
    Xue, Haoran
    Wang, Qiang
    Deng, Longjiang
    Zhang, Baile
    PHYSICAL REVIEW LETTERS, 2020, 125 (26)
  • [2] Topological antichiral surface states in a magnetic Weyl photonic crystal
    Xi, Xiang
    Yan, Bei
    Yang, Linyun
    Meng, Yan
    Zhu, Zhen-Xiao
    Chen, Jing-Ming
    Wang, Ziyao
    Zhou, Peiheng
    Shum, Perry Ping
    Yang, Yihao
    Chen, Hongsheng
    Mandal, Subhaskar
    Liu, Gui-Geng
    Zhang, Baile
    Gao, Zhen
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [3] Topological antichiral surface states in a magnetic Weyl photonic crystal
    Xiang Xi
    Bei Yan
    Linyun Yang
    Yan Meng
    Zhen-Xiao Zhu
    Jing-Ming Chen
    Ziyao Wang
    Peiheng Zhou
    Perry Ping Shum
    Yihao Yang
    Hongsheng Chen
    Subhaskar Mandal
    Gui-Geng Liu
    Baile Zhang
    Zhen Gao
    Nature Communications, 14
  • [4] Antichiral-like and antichiral edge states based on photonic Floquet lattices
    Wang, Junying
    Ji, Xifeng
    Shi, Zhiwei
    Zhang, Yajing
    Li, Huagang
    Li, Yang
    Deng, Yaohua
    Xie, Kang
    EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (12):
  • [5] Coexistence of Chiral and Antichiral Edge States in Photonic Crystals
    Wang, Hongfei
    Xie, Biye
    Ren, Wei
    LASER & PHOTONICS REVIEWS, 2024, 18 (01)
  • [6] Antichiral-like and antichiral edge states based on photonic Floquet lattices
    Junying Wang
    Xifeng Ji
    Zhiwei Shi
    Yajing Zhang
    Huagang Li
    Yang Li
    Yaohua Deng
    Kang Xie
    The European Physical Journal Plus, 138
  • [7] Antichiral one-way edge states in a gyromagnetic photonic crystal
    Chen, Jianfeng
    Liang, Wenyao
    Li, Zhi-Yuan
    PHYSICAL REVIEW B, 2020, 101 (21)
  • [8] Topological origin of antichiral edge states induced by a nonchiral phonon
    Su, Yunlong
    Li, Gang
    PHYSICAL REVIEW B, 2024, 109 (15)
  • [9] Antichiral surface states in time-reversal-invariant photonic semimetals
    Jian-Wei Liu
    Fu-Long Shi
    Ke Shen
    Xiao-Dong Chen
    Ke Chen
    Wen-Jie Chen
    Jian-Wen Dong
    Nature Communications, 14
  • [10] Antichiral surface states in time-reversal-invariant photonic semimetals
    Liu, Jian-Wei
    Shi, Fu-Long
    Shen, Ke
    Chen, Xiao-Dong
    Chen, Ke
    Chen, Wen-Jie
    Dong, Jian-Wen
    NATURE COMMUNICATIONS, 2023, 14 (01)