NORMALIZED GROUND STATES FOR SOBOLEV CRITICAL NONLINEAR SCHRODINGER EQUATION IN THE L2-SUPERCRITICAL CASE

被引:19
|
作者
Li, Quanqing [1 ]
Zou, Wenming [2 ]
机构
[1] Honghe Univ, Dept Math, Mengzi 661100, Yunnan, Peoples R China
[2] Tsinghua Univ, Dept Math, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Normalized solutions; L2-supercritical; Sobolev critical exponent; SCALAR FIELD-EQUATIONS; EXISTENCE; NLS; MASS;
D O I
10.3934/dcds.2023101
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of the normalized ground state solutions to Sobolev critical nonlinear Schrodinger equation: { -triangle u+lambda u=f(u) +|u|(2 & lowast;)-2u,inR(N),(P-m)integral R-N|u|(2)dx=m(2),whereN >= 3, 2 & lowast;:=2N/N-2,m >0,lambda is unknown and will appear as a Lagrange multiplier, fis a mass supercritical and Sobolev subcritical nonlinearity. Using Pohozaev manifold and the concentration-compactness principle, we obtain acouple of the normalized solution to (Pm). The main contribution is related to the fact that we extend the results of L. Jeanjean, S. Lu published in 2020 on Calc. Var. [21] concerning the above problem from Sobolev subcritical settingto Sobolev critical setting, and our results answer an open problem raised by N. Soave published in 2020 on J. Funct. Anal. [37]
引用
收藏
页码:205 / 227
页数:23
相关论文
共 50 条