Probabilistic solar nowcasting based on all-sky imagers

被引:6
|
作者
Nouri, Bijan [1 ]
Wilbert, Stefan [1 ]
Blum, Niklas [1 ]
Fabel, Yann [1 ,2 ]
Lorenz, Elke [3 ]
Hammer, Annette [4 ]
Schmidt, Thomas [4 ]
Zarzalejo, Luis F. [5 ]
Pitz-Paal, Robert [2 ,6 ]
机构
[1] German Aerosp Ctr DLR, Inst Solar Res, Paseo Almeria 73-2, Almeria 04001, Spain
[2] Rhein Westfal TH Aachen, Chair Solar Technol, D-51147 Cologne, Germany
[3] Fraunhofer, Inst Solar Energy Syst, Heidenhofstr 2, D-79110 Freiburg, Germany
[4] DLR, Inst Networked Energy Syst, Carl von Ossietzky Str 15, D-26129 Oldenburg, Germany
[5] CIEMAT Energy Dept, Renewable Energy Div, Ave Complutense 40, Madrid 28040, Spain
[6] DLR, Inst Solar Res, D-51147 Cologne, Germany
关键词
Probabilistic nowcasts; Solar irradiance; All sky imager; Quantile forecast; IRRADIANCE; PREDICTION; FORECASTS; INTERVALS; ENSEMBLE; SYSTEM; VARIABILITY; NETWORK;
D O I
10.1016/j.solener.2023.01.060
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The interest in shortest-term solar irradiance forecasts (nowcasts) increases steadily with the increase share of distributed solar power generation. Such solar irradiance nowcasts are beneficial for different stakeholders, from generation to transmission and demand, in order to tackle challenges caused by the variability of solar irradi-ance. In space and time highly resolved nowcasts can be obtained by all sky imager (ASI) systems, which analyze the sky conditions from sky images. Deterministic nowcasts from ASI systems are subject to significant un-certainties. Reliable uncertainty information are very helpful for any application, in order to derive practical benefit from nowcasts. Therefore, such nowcasts should be probabilistic in nature, which provide probability distributions. Meaningful indicators for the uncertainties at hand are provided by prediction intervals for distinct confidence levels derived from the probability distributions. Thus, a real time capable nonparametric probabi-listic quantile nowcasting method based on deterministic ASI nowcast is developed. The method takes irradiance variabilities as main predictor of nowcast uncertainties into account. A benchmark against three distinct baseline models is conducted over an extensive data set, using a variety of recently recommended scores. Overall average continuous ranked probability skill scores (Clear-Sky Dependent Climatology as baseline) for nowcasts up to 20 min ahead of 0.72 +/- 0.08 (direct normal irradiance) and 0.62 +/- 0.09 (global horizontal irradiance) are reached. For a better evaluation of the actual performance of the probabilistic nowcasts, a discretization of the validation data set into eight irradiance variability conditions is performed. All scores are determined for each of these distinct conditions.
引用
收藏
页码:285 / 307
页数:23
相关论文
共 50 条
  • [1] Solar Irradiance Ramp Forecasting Based on All-Sky Imagers
    Logothetis, Stavros-Andreas
    Salamalikis, Vasileios
    Nouri, Bijan
    Remund, Jan
    Zarzalejo, Luis F.
    Xie, Yu
    Wilbert, Stefan
    Ntavelis, Evangelos
    Nou, Julien
    Hendrikx, Niels
    Visser, Lennard
    Sengupta, Manajit
    Po, Mario
    Chauvin, Remi
    Grieu, Stephane
    Blum, Niklas
    van Sark, Wilfried
    Kazantzidis, Andreas
    [J]. ENERGIES, 2022, 15 (17)
  • [2] Benchmarking of solar irradiance nowcast performance derived from all-sky imagers
    Logothetis, Stavros-Andreas
    Salamalikis, Vasileios
    Wilbert, Stefan
    Remund, Jan
    Zarzalejo, Luis F.
    Xie, Yu
    Nouri, Bijan
    Ntavelis, Evangelos
    Nou, Julien
    Hendrikx, Niels
    Visser, Lennard
    Sengupta, Manajit
    Po, Mario
    Chauvin, Remi
    Grieu, Stephane
    Blum, Niklas
    van Sark, Wilfried
    Kazantzidis, Andreas
    [J]. RENEWABLE ENERGY, 2022, 199 : 246 - 261
  • [3] Cloud height measurement by a network of all-sky imagers
    Benedikt Blum, Niklas
    Nouri, Bijan
    Wilbert, Stefan
    Schmidt, Thomas
    Luensdorf, Ontje
    Stuehrenberg, Jonas
    Heinemann, Detlev
    Kazantzidis, Andreas
    Pitz-Paal, Robert
    [J]. ATMOSPHERIC MEASUREMENT TECHNIQUES, 2021, 14 (07) : 5199 - 5224
  • [4] Height measurements of nightglow structures observed by all-sky imagers
    Kubota, M
    Ishii, M
    Shiokawa, K
    Ejiri, MK
    Ogawa, T
    [J]. MESOPAUSE AND EXTRA-TERRESTRIAL INFLUENCES ON THE OZONE LAYER, 1999, 24 (05): : 593 - 596
  • [5] Combining Deep Learning and Physical Models: A Benchmark Study on All-Sky Imager-Based Solar Nowcasting Systems
    Fabel, Yann
    Nouri, Bijan
    Wilbert, Stefan
    Blum, Niklas
    Schnaus, Dominik
    Triebel, Rudolph
    Zarzalejo, Luis F.
    Ugedo, Enrique
    Kowalski, Julia
    Pitz-Paal, Robert
    [J]. SOLAR RRL, 2024, 8 (04)
  • [6] Validation of an all-sky imager-based nowcasting system for industrial PV plants
    Kuhn, Pascal
    Nouri, Bijan
    Wilbert, Stefan
    Prahl, Christoph
    Kozonek, Nora
    Schmidt, Thomas
    Yasser, Zeyad
    Ramirez, Lourdes
    Zarzalejo, Luis
    Meyer, Angela
    Vuilleumier, Laurent
    Heinemann, Detlev
    Blanc, Philippe
    Pitz-Paal, Robert
    [J]. PROGRESS IN PHOTOVOLTAICS, 2018, 26 (08): : 608 - 621
  • [7] Benchmarking of six cloud segmentation algorithms for ground-based all-sky imagers
    Hasenbalg, M.
    Kuhn, P.
    Wilbert, S.
    Nouri, B.
    Kazantzidis, A.
    [J]. SOLAR ENERGY, 2020, 201 : 596 - 614
  • [8] Estimation of solar irradiance and solar power based on all-sky images
    Chu, Tsai -Ping
    Guo, Jia-Hong
    Leu, Yih-Guang
    Chou, Li -Fen
    [J]. SOLAR ENERGY, 2023, 249 : 495 - 506
  • [9] Application of Simple All-sky Imagers for the Estimation of Aerosol Optical Depth
    Kazantzidis, Andreas
    Tzoumanikas, Panagiotis
    Nikitidou, Efterpi
    Salamalikis, Vasileios
    Wilbert, Stefan
    Prahl, Christoph
    [J]. INTERNATIONAL CONFERENCE ON CONCENTRATING SOLAR POWER AND CHEMICAL ENERGY SYSTEMS (SOLARPACES 2016), 2017, 1850
  • [10] Analyzing Spatial Variations of Cloud Attenuation by a Network of All-Sky Imagers
    Blum, Niklas Benedikt
    Wilbert, Stefan
    Nouri, Bijan
    Stuehrenberg, Jonas
    Galeano, Jorge Enrique Lezaca
    Schmidt, Thomas
    Heinemann, Detlev
    Vogt, Thomas
    Kazantzidis, Andreas
    Pitz-Paal, Robert
    [J]. REMOTE SENSING, 2022, 14 (22)