Effects of inocula on methane production and the microbial community in a rice straw anaerobic digestion system

被引:2
|
作者
Huang, Yongwen [1 ,3 ]
Yang, Feifan [2 ]
Zhang, Hang [2 ]
Hua, Ruilin [1 ]
Liu, Yangyun [3 ]
Chen, Fangqing [1 ]
机构
[1] China Three Gorges Univ, Hubei Int Sci & Technol Ctr Ecol Conservat & Manag, Ctr Ecol Conservat & Management Gorges Area 3, Daxue Rd 8, Yichang 443002, Hubei, Peoples R China
[2] China Three Gorges Univ, Engn Res Ctr Ecoenvironm Gorges Reservoir Reg 3, Minist Educ, Daxue Rd 8, Yichang 443002, Hubei, Peoples R China
[3] Hubei Zhengjiang Environm Sci & Technol Co Ltd, Xihu Rd 25, Yichang 443002, Hubei, Peoples R China
关键词
Anaerobic digestion; Inoculum; Biomethane production; Bacterial community; Archaeal community; Biodiversity; ECOLOGICAL DIVERSITY; BIOGAS MICROBIOME; SLUDGE; WASTE; METHANOGENESIS; DEGRADATION; PERFORMANCE;
D O I
10.1016/j.fuel.2023.130340
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Field experiments have shown that the mixed anaerobic digestion of straw with livestock and poultry manure can improve the efficiency of biogas production. We hypothesize that inoculation with livestock and poultry manure increase the efficiency of methane production by improving the diversity and structure of microbial community in the field anaerobic digestion system. In this study, an experimental system was established to simulate the microbial community of the mixed anaerobic digestion system in the field. The methane production and taxonomic composition of bacterial and archaeal communities in the rice straw anaerobic digestion systems were determined. We aim to reveal the effects of the inocula on the diversity and composition of bacterial and archaeal communities and the mechanism underlying the impact on biogas production in the field. The following results were obtained. (1) Inoculation significantly improved the efficiency of methane production in anaerobic digestion, and the best performance was achieved with treatment A (cleared biogas slurry), which obtained methane production that were 39.59 %, 106.85 %, and 123.00 % higher than in treatment B (pig manure extract), C (cleared biogas slurry + pig manure extract), and the control, respectively. (2) The inocula increased the abundance and diversity of bacterial communities in the early and middle stages and archaeal communities in the early stage. (3) The inocula also had a significant impact on bacterial and archaeal community composition in the early and middle stages. The inocula increased the relative abundance of Aquamicrobium_A, Proteiniphilum, and Cryptobacteroides but reduced the relative abundance of Macellibacteroides, Acinetobacter, and Phocaeicola. The dominant genus of archaeal community was altered from Methanosarcina to Methanocorpusculum. (4) It is concluded that inoculation significantly increase methane production as the inocula improve the abundance and diversity of bacteria and archaea of anaerobic digestion systems in the early and middle stages of digestion, as well as improve the structure and metabolic pathway of archaeal communities.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Effects of yellow silage additives on methane production and microbial community dynamics during anaerobic digestion of wheat straw
    Yan J.
    Lu B.
    Xi H.
    Meng X.
    Yuan X.
    Zhu W.
    Cui Z.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2020, 36 (15): : 252 - 260
  • [2] Effect of hydrothermal-acid pretreatment on methane yield and microbial community in anaerobic digestion of rice straw
    Luo, Wei
    Tian, Hailin
    Tan, Wenxia
    Tan, Qian
    BIORESOURCE TECHNOLOGY, 2024, 402
  • [3] Methane production and microbial community acclimation of five manure inocula during psychrophilic anaerobic digestion of swine manure
    Lendormi, Thomas
    Jaziri, Kais
    Beline, Fabrice
    Bureau, Chrystelle
    Midoux, Cedric
    Barrington, Suzelle
    Dabert, Patrick
    Le Roux, Sophie
    JOURNAL OF CLEANER PRODUCTION, 2022, 340
  • [4] Methane production performance of semi-continuous anaerobic fermentation with rice straw pretreated by microbial community
    Pan Y.
    Liu S.
    He Y.
    Xiang Y.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2020, 36 (11): : 261 - 266
  • [5] Effects of different pretreatment methods on biogas production and microbial community in anaerobic digestion of wheat straw
    Kang, Ya-Ru
    Su, Yao
    Wang, Jing
    Chu, Yi-Xuan
    Tian, Guangming
    He, Ruo
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2021, 28 (37) : 51772 - 51785
  • [6] Effects of different pretreatment methods on biogas production and microbial community in anaerobic digestion of wheat straw
    Ya-Ru Kang
    Yao Su
    Jing Wang
    Yi-Xuan Chu
    Guangming Tian
    Ruo He
    Environmental Science and Pollution Research, 2021, 28 : 51772 - 51785
  • [7] Effects of cold isostatic press pretreatment of rice straw on microstructure and efficiency of anaerobic digestion for methane production
    Yang, Jiancheng
    Lan, Xuan
    Zhou, Tiantian
    Zhang, Quanguo
    Zhang, Zhiyun
    Li, Pengfei
    Qu, Bin
    BIORESOURCE TECHNOLOGY, 2023, 386
  • [8] Synergistic effects of rice straw and rice bran on enhanced methane production and process stability of anaerobic digestion of food waste
    Hou, Tingting
    Zhao, Jiamin
    Lei, Zhongfang
    Shimizu, Kazuya
    Zhang, Zhenya
    BIORESOURCE TECHNOLOGY, 2020, 314
  • [9] Particle size reduction of rice straw enhances methane production under anaerobic digestion
    Dai, Xiaohu
    Hua, Yu
    Dai, Lingling
    Cai, Chen
    BIORESOURCE TECHNOLOGY, 2019, 293
  • [10] Anaerobic Co-Digestion of Rice Straw with Ternary Mixtures for Enhanced Methane Production
    Mothe, Sagarika
    Bella, K.
    Sukesh, M. J.
    Gopal, B.
    Rao, P. Venkateswara
    Sridhar, Pilli
    INTERNATIONAL JOURNAL OF RENEWABLE ENERGY RESEARCH, 2024, 14 (01): : 203 - 215