共 50 条
Deep eutectic solvent viscosity prediction by hybrid machine learning and group contribution
被引:16
|作者:
Roosta, Ahmadreza
[1
]
Haghbakhsh, Reza
[2
,3
]
Duarte, Ana Rita C.
[3
]
Raeissi, Sona
[1
]
机构:
[1] Shiraz Univ, Sch Chem & Petr Engn, Mollasadra Ave, Shiraz 7134851154, Iran
[2] Univ Isfahan, Fac Engn, Dept Chem Engn, Esfahan 8174673441, Iran
[3] Univ Nova Lisboa, Dept Quim, Fac Ciencias & Tecnol, LAQV,REQUIMTE, P-2829516 Caparica, Portugal
关键词:
DES;
Physical property;
Machine learning;
Artificial neural network;
Support vector machine;
SOLUBILITY;
MODEL;
D O I:
10.1016/j.molliq.2023.122747
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
In this study, hybrid machine learning nonlinear models were developed to predict the viscosity of DESs by combining the group contribution (GC) concept with the multilayer perceptron, a well-known feedforward artificial neural network, and the Least Squares Support Vector Machine (LSSVM) algorithm. Deep Eutectic Solvents (DESs) have come to the forefront in recent years as appealing substitutes for conventional solvents. It is imperative to have a thorough grasp of the essential properties of DESs to expand the employment of these compounds in new procedures. Most frequently, one of the crucial physical properties of a DES that must be precisely determined is its viscosity. To develop the models, a dataset of 2533 viscosity data points for 305 DESs at various temperatures (from 277.15 to 373.15 K) was gathered to build the models. By using temperature, molar ratios, and functional groups as inputs, the results indicate that the suggested models can determine the viscosity of DESs with high accuracy. The models yield average absolute relative deviations below 10% and squared correlation coefficients higher than 0.98.
引用
收藏
页数:11
相关论文