Entanglement Entropy of Non-Hermitian Eigenstates and the Ginibre Ensemble

被引:16
|
作者
Cipolloni, Giorgio [1 ]
Kudler-Flam, Jonah [1 ,2 ,3 ]
机构
[1] Princeton Univ, Princeton Ctr Theoret Sci, Princeton, NJ 08544 USA
[2] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA
[3] Univ Chicago, Kadanoff Ctr Theoret Phys, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
QUANTUM; REAL;
D O I
10.1103/PhysRevLett.130.010401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Entanglement entropy is a powerful tool in characterizing universal features in quantum many-body systems. In quantum chaotic Hermitian systems, typical eigenstates have near maximal entanglement with very small fluctuations. Here, we show that for Hamiltonians displaying non-Hermitian many-body quantum chaos, modeled by the Ginibre ensemble, the entanglement entropy of typical eigenstates is greatly suppressed. The entropy does not grow with the Hilbert space dimension for sufficiently large systems, and the fluctuations are of equal order. We derive the novel entanglement spectrum that has infinite support in the complex plane and strong energy dependence. We provide evidence of universality, and similar behavior is found in the non-Hermitian Sachdev-Ye-Kitaev model, indicating the general applicability of the Ginibre ensemble to dissipative many-body quantum chaos.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Entanglement entropy of non-Hermitian free fermions
    Guo, Yi-Bin
    Yu, Yi-Cong
    Huang, Rui-Zhen
    Yang, Li-Ping
    Chi, Run-Ze
    Liao, Hai-Jun
    Xiang, Tao
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2021, 33 (47)
  • [2] Eigenstate entanglement entropy in a PT-invariant non-Hermitian system
    Modak, Ranjan
    Mandal, Bhabani Prasad
    PHYSICAL REVIEW A, 2021, 103 (06)
  • [3] Detecting entanglement with non-Hermitian operators
    Hillery, Mark
    Ho Trung Dung
    Niset, Julien
    PHYSICAL REVIEW A, 2009, 80 (05):
  • [4] Quantum entanglement of non-Hermitian quasicrystals
    Chen, Li-Mei
    Zhou, Yao
    Chen, Shuai A.
    Ye, Peng
    PHYSICAL REVIEW B, 2022, 105 (12)
  • [5] Entanglement in non-Hermitian quantum theory
    Pati, Arun K.
    PRAMANA-JOURNAL OF PHYSICS, 2009, 73 (03): : 485 - 498
  • [6] Entanglement in non-Hermitian quantum theory
    Arun K. Pati
    Pramana, 2009, 73 : 485 - 498
  • [7] Thermodynamics and entanglement entropy of the non-Hermitian Su-Schrieffer-Heeger model
    Munoz-Arboleda, D. F.
    Arouca, R.
    Smith, C. Morais
    PHYSICAL REVIEW B, 2024, 110 (11)
  • [8] Quantum anomaly, non-Hermitian skin effects, and entanglement entropy in open systems
    Okuma, Nobuyuki
    Sato, Masatoshi
    PHYSICAL REVIEW B, 2021, 103 (08)
  • [9] A matrix model of a non-Hermitian β-ensemble
    Mezzadri, Francesco
    Taylor, Henry
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2025, 14 (01)
  • [10] Non-Hermitian β-ensemble with real eigenvalues
    Bohigas, O.
    Pato, M. P.
    AIP ADVANCES, 2013, 3 (03):