Gaseous Catalyst Assisted Growth of Graphene on Silicon Carbide for Quantum Hall Resistance Standard Device

被引:2
|
作者
Chen, Lingxiu [1 ,2 ]
Wang, HuiShan [1 ,3 ]
Kong, Ziqiang [1 ,3 ]
Zhai, Changwei [4 ,5 ]
Wang, Xiujun [1 ,3 ]
Wang, Yibo [3 ]
Liu, Zhengtai [1 ]
Jiang, Chengxin [1 ,6 ]
Chen, Chen [1 ,3 ]
Shen, Dawei [1 ]
Chen, Xipin [7 ]
Zhu, Yuxuan [8 ]
Bao, Wenzhong [8 ]
Yang, Zhenyu [4 ,5 ]
Lu, Yunfeng [4 ,5 ]
Wang, Haomin [1 ,3 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Funct Mat Informat, Shanghai 200050, Peoples R China
[2] China Univ Min & Technol, Sch Mat Sci & Phys, Xuzhou 221116, Peoples R China
[3] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[4] Natl Inst Metrol, Beijing 100029, Peoples R China
[5] Key Lab Elect Quantum Stand State Market Regulat, Beijing 100029, Peoples R China
[6] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
[7] South China Normal Univ, Int Dept, Affiliated High Sch, Guangzhou 510630, Peoples R China
[8] Fudan Univ, Sch Microelect, State Key Lab ASIC & Syst, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划; 中国博士后科学基金;
关键词
gaseous catalyst; graphene; quantum Hall resistance standard device; silicon carbide; step height; CHEMICAL-VAPOR-DEPOSITION; SINGLE-CRYSTAL GRAPHENE; EPITAXIAL GRAPHENE; HIGH-QUALITY;
D O I
10.1002/admt.202201127
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Direct growth of graphene on silicon carbide (SiC) is a very promising method for preparing high-quality graphene. However, high quality single crystal epitaxial graphene films on SiC always form at a temperature higher than 1800 degrees C. Here, the synthesis of graphene on the silicon surface (0001) of SiC at approximate to 1300 degrees C by gaseous catalyst-assisted chemical vapor deposition (CVD) method is reported. As the step height of terraces on SiC surface can influence the performance of graphene Hall devices, low-temperature growth of graphene benefits for keeping the steps of the SiC surface at a small height, which can be achieved by a pre-treatment before growth. A graphene quantum Hall resistance standard (G-QHRS) device fabricated on the SiC surface with a small step height of approximate to 0.5 nm exhibits an accuracy of 1.15 x 10(-8) and a reproducibility of 3.6 x 10(-9) within 7 days in the measurement of quantum resistance at B = 6 T and T = 4.5 K. The gaseous catalyst-assisted CVD on SiC is an effective scalable growth approach that produces high-quality graphene for the resistance metrology, and it represents a promising step toward a low magnetic field QHRS setting the basis of low-cost and transportable QHRS in a near future.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Quantum Hall Resistance Standard based on Graphene
    Janssen, T. J. B. M.
    Tzalenchuk, A.
    2010 CONFERENCE ON PRECISION ELECTROMAGNETIC MEASUREMENTS CPEM, 2010, : 579 - 580
  • [2] Quantum Hall resistance standards from graphene grown by chemical vapour deposition on silicon carbide
    Lafont, F.
    Ribeiro-Palau, R.
    Kazazis, D.
    Michon, A.
    Couturaud, O.
    Consejo, C.
    Chassagne, T.
    Zielinski, M.
    Portail, M.
    Jouault, B.
    Schopfer, F.
    Poirier, W.
    NATURE COMMUNICATIONS, 2015, 6
  • [3] Quantum Hall resistance standards from graphene grown by chemical vapour deposition on silicon carbide
    F. Lafont
    R. Ribeiro-Palau
    D. Kazazis
    A. Michon
    O. Couturaud
    C. Consejo
    T. Chassagne
    M. Zielinski
    M. Portail
    B. Jouault
    F. Schopfer
    W. Poirier
    Nature Communications, 6
  • [4] Crucial Steps to Realize a Graphene Quantum Hall Resistance Standard
    Park, Jaesung
    Chae, Dong-Hun
    Kim, Dan Bee
    Kim, Wan-Seop
    2020 CONFERENCE ON PRECISION ELECTROMAGNETIC MEASUREMENTS (CPEM), 2020,
  • [5] Graphene growth on silicon carbide
    Hibino, Hiroki
    Kageshima, Hiroyuki
    Nagase, Masao
    NTT Technical Review, 2010, 8 (08):
  • [6] A prototype of RK/200 quantum Hall array resistance standard on epitaxial graphene
    Lartsev, A.
    Lara-Avila, S.
    Danilov, A.
    Kubatkin, S.
    Tzalenchuk, A.
    Yakimova, R.
    JOURNAL OF APPLIED PHYSICS, 2015, 118 (04)
  • [7] ON THE GROWTH OF β-SILICON CARBIDE BY THE METHOD OF GASEOUS CRACKING
    郭祝崑
    陈显求
    Science China Mathematics, 1964, (10) : 1710 - 1715
  • [8] Quantum Hall resistance standard in graphene devices under relaxed experimental conditions
    R. Ribeiro-Palau
    F. Lafont
    J. Brun-Picard
    D. Kazazis
    A. Michon
    F. Cheynis
    O. Couturaud
    C. Consejo
    B. Jouault
    W. Poirier
    F. Schopfer
    Nature Nanotechnology, 2015, 10 : 965 - 971
  • [9] Quantum Hall resistance standard in graphene devices under relaxed experimental conditions
    Ribeiro-Palau, R.
    Lafont, F.
    Brun-Picard, J.
    Kazazis, D.
    Michon, A.
    Cheynis, F.
    Couturaud, O.
    Consejo, C.
    Jouault, B.
    Poirier, W.
    Schopfer, F.
    NATURE NANOTECHNOLOGY, 2015, 10 (11) : 965 - U168
  • [10] AUTOMATED QUANTUM HALL RESISTANCE STANDARD
    SCHUMACHER, B
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 1995, 44 (02) : 199 - 200