Nonlinear indentation of second-order hyperelastic materials

被引:10
|
作者
Du, Yangkun [1 ]
Stewart, Peter [1 ]
Hill, Nicholas A. [1 ]
Yin, Huabing [2 ]
Penta, Raimondo [1 ]
Kory, Jakub [1 ]
Luo, Xiaoyu [1 ]
Ogden, Raymond [1 ]
机构
[1] Univ Glasgow, Sch Math & Stat, Glasgow G12 8QQ, Lanark, Scotland
[2] Univ Glasgow, Sch Engn, Biomed Engn, Glasgow G12 8LT, Lanark, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Nonlinear indentation; Contact problem; Second-order elasticity; Hertz model; Hyperelasticity; Incompressibility; SPHERICAL INDENTATION; LARGE-DEFORMATION; ADHESIVE CONTACT; HERTZ CONTACT;
D O I
10.1016/j.jmps.2022.105139
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The classical problem of indentation on an elastic substrate has found new applications in the field of the Atomic Force Microscopy. However, linearly elastic indentation models are not sufficiently accurate to predict the force-displacement relationship at large indentation depths. For hyperelastic materials, such as soft polymers and biomaterials, a nonlinear indentation model is needed. In this paper, we use second-order elasticity theory to capture larger amplitude deformations and material nonlinearity. We provide a general solution for the contact problem for deformations that are second-order in indentation amplitude with arbitrary indenter profiles. Moreover, we derive analytical solutions by using either parabolic or quartic surfaces to mimic a spherical indenter. The analytical prediction for a quartic surface agrees well with finite element simulations using a spherical indenter for indentation depths on the order of the indenter radius. In particular, the relative error between the two approaches is less than 1% for an indentation depth equal to the indenter radius, an order of magnitude less than that observed with models which are either first-order in indentation amplitude or those which are second-order in indentation amplitude but with a parabolic indenter profile.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] A comparison of second-order constitutive theories for hyperelastic materials
    Van Dyke, TJ
    Hoger, A
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2000, 37 (41) : 5873 - 5917
  • [2] Organic materials for second-order nonlinear optics
    Bosshard, C
    Spreiter, R
    Meier, U
    Liakatas, I
    Bösch, M
    Jäger, M
    Manetta, S
    Follonier, S
    Günter, P
    CRYSTAL ENGINEERING: FROM MOLECULES AND CRYSTALS TO MATERIALS, 1999, 538 : 261 - 278
  • [3] Interaction phenomena in second-order nonlinear materials
    Baboiu, Daniel-Marian
    Stegeman, George I.
    Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 1996, : 191 - 192
  • [4] Chiral materials in second-order nonlinear optics
    Kauranen, Martti
    Verbiest, Thierry
    Persoons, André
    Journal of Nonlinear Optical Physics and Materials, 1999, 8 (02): : 171 - 189
  • [5] A second-order theory for nonlinear composite materials
    Castaneda, PP
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE PHYSIQUE CHIMIE ASTRONOMIE, 1996, 322 (01): : 3 - 10
  • [6] ''Quadrupoled'' materials for second-order nonlinear optics
    Hubbard, SF
    Petschek, RG
    Singer, KD
    DSidocky, N
    Hudson, C
    Chien, LC
    Henderson, CC
    Cahill, PA
    NONLINEAR OPTICAL PROPERTIES OF ORGANIC MATERIALS X, 1997, 3147 : 41 - 52
  • [7] Chiral materials in second-order nonlinear optics
    Kauranen, M
    Busson, B
    Verbiest, T
    Persoons, A
    LINEAR AND NONLINEAR OPTICS OF ORGANIC MATERIALS, 2001, 4461 : 5 - 14
  • [8] New second-order nonlinear octupolar materials
    Samoc, A
    Samoc, M
    Luther-Davies, B
    Kelly, JF
    Krausz, ER
    Willis, AC
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2004, 415 : 179 - 195
  • [9] Chiral materials in second-order nonlinear optics
    Kauranen, M
    Verbiest, T
    Persoons, A
    JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 1999, 8 (02): : 171 - 189
  • [10] Characterization techniques for second-order nonlinear optical materials
    Eckardt, RC
    Catella, GC
    NONLINEAR FREQUENCY GENERATION AND CONVERSION: MATERIALS DEVICES, AND APPLICATIONS III, 2004, 5337 : 1 - 10