An exponentially convergent discretization for space-time fractional parabolic equations using hp-FEM

被引:0
|
作者
Melenk, Jens Markus [1 ]
Rieder, Alexander [1 ]
机构
[1] Tech Univ Wien, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
基金
奥地利科学基金会;
关键词
fractional diffusion; sinc quadrature; Mittag-Leffler; Riesz-Dunford; hp-FEM; APPROXIMATION; QUADRATURE; OPERATORS;
D O I
10.1093/imanum/drac045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a space-time fractional parabolic problem. Combining a sinc quadrature-based method for discretizing the Riesz-Dunford integral with hp-FEM in space yields an exponentially convergent scheme for the initial boundary value problem with homogeneous right-hand side. For the inhomogeneous problem, an hp-quadrature scheme is implemented. We rigorously prove exponential convergence with focus on small times t, proving robustness with respect to startup singularities due to data incompatibilities.
引用
收藏
页码:2352 / 2376
页数:25
相关论文
共 50 条
  • [1] SPACE-TIME ADAPTIVE hp-FEM: METHODOLOGY OVERVIEW
    Solin, Pavel
    Segeth, Karel
    Dolezel, Ivo
    PROGRAMS AND ALGORITHMS OF NUMERICAL MATHEMATICS 14, 2008, : 185 - 200
  • [2] Space-time adaptive hp-FEM for problems with traveling sharp fronts
    Solin, Pavel
    Korous, Lukas
    COMPUTING, 2013, 95 (01) : S709 - S722
  • [3] Space-time hp-approximation of parabolic equations
    Devaud, Denis
    Schwab, Christoph
    CALCOLO, 2018, 55 (03)
  • [4] Parallel space-time hp adaptive discretization scheme for parabolic problems
    Los, M.
    Schaefer, R.
    Paszynski, M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 344 : 819 - 835
  • [5] Numerical Approximation of Space-Time Fractional Parabolic Equations
    Bonito, Andrea
    Lei, Wenyu
    Pasciak, Joseph E.
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2017, 17 (04) : 679 - 705
  • [6] Modeling Ionic Polymer-Metal Composites with Space-Time Adaptive Multimesh hp-FEM
    Pugal, David
    Solin, Pavel
    Kim, Kwang J.
    Aabloo, Alvo
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2012, 11 (01) : 249 - 270
  • [7] θ schemes for finite element discretization of the space-time fractional diffusion equations
    Guan, Qingguang
    Gunzburger, Max
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 288 : 264 - 273
  • [8] On some aspects of the hp-FEM for time-harmonic Maxwell's equations
    Vejchodsky, Tomas
    Solin, Pavel
    Zitka, Martin
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 2006, : 691 - +
  • [9] A posteriori error analysis for a space-time parallel discretization of parabolic partial differential equations
    Chaudhry, Jehanzeb H.
    Estep, Donald
    Tavener, Simon J.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2024, 40 (01)
  • [10] Approximation of Space-Time Fractional Equations
    Capitanelli, Raffaela
    D'Ovidio, Mirko
    FRACTAL AND FRACTIONAL, 2021, 5 (03)