Zonisamide attenuates pressure overload-induced myocardial hypertrophy in mice through proteasome inhibition

被引:6
|
作者
Wu, Qian [1 ]
Liu, Wan-jie [1 ]
Ma, Xin-yu [1 ]
Chang, Ji-shuo [1 ]
Zhao, Xiao-ya [1 ]
Liu, Ying-hua [1 ]
Yu, Xi-yong [1 ]
机构
[1] Guangzhou Med Univ, Dept Pharmacol, Key Lab Mol Target & Clin Pharmacol, Guangzhou 511436, Peoples R China
关键词
myocardial hypertrophy; pressure overload; zonisamide; proteasome; glycogen synthesis kinase 3 (GSK-3); neonatal rat cardiomyocytes; angiotensin II; LEFT-VENTRICULAR MASS; CARDIOMYOCYTE HYPERTROPHY; THERAPEUTIC TARGET; CARDIAC PROTEASOME; DOWN-REGULATION; GSK-3; FAMILY; IN-VIVO; HEART; DYSFUNCTION; EXPRESSION;
D O I
10.1038/s41401-023-01191-7
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Myocardial hypertrophy is a pathological thickening of the myocardium which ultimately results in heart failure. We previously reported that zonisamide, an antiepileptic drug, attenuated pressure overload-caused myocardial hypertrophy and diabetic cardiomyopathy in murine models. In addition, we have found that the inhibition of proteasome activates glycogen synthesis kinase 3 (GSK-3) thus alleviates myocardial hypertrophy, which is an important anti-hypertrophic strategy. In this study, we investigated whether zonisamide prevented pressure overload-caused myocardial hypertrophy through suppressing proteasome. Pressure overload-caused myocardial hypertrophy was induced in mice by trans-aortic constriction (TAC) surgery. Two days after the surgery, the mice were administered zonisamide (10, 20, 40 mg center dot kg-1 center dot d-1, i.g.) for four weeks. We showed that zonisamide administration significantly mitigated impaired cardiac function. Furthermore, zonisamide administration significantly inhibited proteasome activity as well as the expression levels of proteasome subunit beta types (PSMB) of the 20 S proteasome (PSMB1, PSMB2 and PSMB5) and proteasome-regulated particles (RPT) of the 19 S proteasome (RPT1, RPT4) in heart tissues of TAC mice. In primary neonatal rat cardiomyocytes (NRCMs), zonisamide (0.3 mu M) prevented myocardial hypertrophy triggered by angiotensin II (Ang II), and significantly inhibited proteasome activity, proteasome subunits and proteasome-regulated particles. In Ang II-treated NRCMs, we found that 18 alpha-glycyrrhetinic acid (18 alpha-GA, 2 mg/ml), a proteasome inducer, eliminated the protective effects of zonisamide against myocardial hypertrophy and proteasome. Moreover, zonisamide treatment activated GSK-3 through inhibiting the phosphorylated AKT (protein kinase B, PKB) and phosphorylated liver kinase B1/AMP-activated protein kinase (LKB1/AMPK alpha), the upstream of GSK-3. Zonisamide treatment also inhibited GSK-3's downstream signaling proteins, including extracellular signal-regulated kinase (ERK) and GATA binding protein 4 (GATA4), both being the hypertrophic factors. Collectively, this study highlights the potential of zonisamide as a new therapeutic agent for myocardial hypertrophy, as it shows potent anti-hypertrophic potential through the suppression of proteasome.
引用
收藏
页码:738 / 750
页数:13
相关论文
共 50 条
  • [1] Zonisamide attenuates pressure overload-induced myocardial hypertrophy in mice through proteasome inhibition
    Qian Wu
    Wan-jie Liu
    Xin-yu Ma
    Ji-shuo Chang
    Xiao-ya Zhao
    Ying-hua Liu
    Xi-yong Yu
    Acta Pharmacologica Sinica, 2024, 45 : 738 - 750
  • [2] Cinnamaldehyde attenuates pressure overload-induced cardiac hypertrophy
    Yang, Liu
    Wu, Qing-Qing
    Liu, Yuan
    Hu, Zhe-Fu
    Bian, Zhou-Yan
    Tang, Qi-Zhu
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY, 2015, 8 (11): : 14345 - 14354
  • [3] Puerarin attenuates pressure overload-induced cardiac hypertrophy
    Yuan, Yuan
    Zong, Jing
    Zhou, Heng
    Bian, Zhou-Yan
    Deng, Wei
    Dai, Jia
    Gan, Hua-Wen
    Yang, Zheng
    Li, Hongliang
    Tang, Qi-Zhu
    JOURNAL OF CARDIOLOGY, 2014, 63 (1-2) : 73 - 81
  • [4] Evodiamine attenuates pressure overload-induced cardiac hypertrophy
    Li, Fangfang
    Yuan, Yuan
    Zhang, Ning
    Wu, Qingqing
    Li, Jin
    Zhou, Mengqiao
    Yang, Zheng
    Tang, Qizhu
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, 2017, 10 (07): : 10202 - 10213
  • [5] Naringenin attenuates pressure overload-induced cardiac hypertrophy
    Zhang, Ning
    Yang, Zheng
    Yuan, Yuan
    Li, Fangfang
    Liu, Yuan
    Ma, Zhenguo
    Liao, Haihan
    Bian, Zhouyan
    Zhang, Yao
    Zhou, Heng
    Deng, Wei
    Zhou, Mengqiao
    Tang, Qizhu
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2015, 10 (06) : 2206 - 2212
  • [6] Pharmacological inhibition of DNA methylation attenuates pressure overload-induced cardiac hypertrophy in rats
    Stenzig, Justus
    Schneeberger, Yvonne
    Loeser, Alexandra
    Peters, Barbara S.
    Schaefer, Andreas
    Zhao, Rong-Rong
    Ng, Shi Ling
    Hoeppner, Grit
    Geertz, Birgit
    Hirt, Marc N.
    Tan, Wilson
    Wong, Eleanor
    Reichenspurner, Hermann
    Foo, Roger S-Y
    Eschenhagen, Thomas
    JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2018, 120 : 53 - 63
  • [7] Priming with synthetic oligonucleotides attenuates pressure overload-induced inflammation and cardiac hypertrophy in mice
    Velten, Markus
    Duerr, Georg D.
    Pessies, Thilo
    Schild, Julia
    Lohner, Ralph
    Mersmann, Jan
    Dewald, Oliver
    Zacharowski, Kai
    Klaschik, Sven
    Hilbert, Tobias
    Hoeft, Andreas
    Baumgarten, Georg
    Meyer, Rainer
    Boehm, Olaf
    Knuefermann, Pascal
    CARDIOVASCULAR RESEARCH, 2012, 96 (03) : 422 - 432
  • [8] Bezafibrate Attenuates Pressure Overload-Induced Cardiac Hypertrophy and Fibrosis
    Xu, Si-Chi
    Ma, Zhen-Guo
    Wei, Wen-Ying
    Yuan, Yu-Pei
    Tang, Qi-Zhu
    PPAR RESEARCH, 2017, 2017
  • [9] Gentisic acid attenuates pressure overload-induced cardiac hypertrophy and fibrosis in mice through inhibition of the ERK1/2 pathway
    Sun, Simei
    Kee, Hae Jin
    Jin, Li
    Ryu, Yuhee
    Choi, Sin Young
    Kim, Gwi Ran
    Jeong, Myung Ho
    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2018, 22 (12) : 5964 - 5977
  • [10] Diacylglycerol kinase ζ attenuates pressure overload-induced cardiac hypertrophy
    Harada, Mutsuo
    Takeishi, Yasuchika
    Arimoto, Takanori
    Niizeki, Takeshi
    Kitahara, Tatsuro
    Goto, Kaoru
    Walsh, Richard A.
    Kubota, Isao
    CIRCULATION JOURNAL, 2007, 71 (02) : 276 - 282