Apparent diffusion coefficient histogram analysis for differentiating fibroblastic meningiomas from non-fibroblastic WHO grade 1 meningiomas

被引:1
|
作者
Han, Tao [1 ,2 ,3 ,4 ]
Long, Changyou [5 ]
Liu, Xianwang [1 ,2 ,3 ,4 ]
Zhang, Yuting [1 ,2 ,3 ,4 ]
Zhang, Bin [1 ,2 ,3 ,4 ]
Deng, Liangna [1 ,2 ,3 ,4 ]
Jing, Mengyuan [1 ,2 ,3 ,4 ]
Zhou, Junlin [1 ,3 ,4 ]
机构
[1] Lanzhou Univ, Dept Radiol, Hosp 2, Lanzhou 730030, Peoples R China
[2] Lanzhou Univ, Clin Sch 2, Lanzhou 730030, Peoples R China
[3] Key Lab Med Imaging Gansu Prov, Lanzhou 730030, Peoples R China
[4] Gansu Int Sci & Technol Cooperat Base Med Imaging, Lanzhou 730030, Peoples R China
[5] Qinghai Univ, Affiliated Hosp, Image Ctr, Xining 810001, Peoples R China
基金
美国国家科学基金会;
关键词
Meningioma; Magnetic resonance imaging; Histogram analysis; Apparent diffusion coefficient;
D O I
10.1016/j.clinimag.2023.110019
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To investigate the role of apparent diffusion coefficient (ADC) histogram analysis in differentiating fibroblastic meningiomas (FM) from non-fibroblastic WHO grade 1 meningiomas (nFM). Methods: This retrospective study analyzed the histopathological and diagnostic imaging data of 220 patients with histopathologically confirmed FM and nFM. The whole tumors were delineated on axial ADC images, and histogram parameters (mean, variance, skewness, kurtosis, as well as the 1st, 10th, 50th, 90th, and 99th percentile ADC [ADCp1, ADCp10, ADCp50, ADCp90, and ADCp99, respectively]) were obtained. Multivariate logistic regression analysis was used to identify the most valuable variables for discriminating FM from nFM WHO grade 1 meningiomas, and their diagnostic efficacy in differentiating FM from nFM before surgery was assessed using receiver operating characteristic (ROC) curves.Results: The mean, variance, ADCp50, ADCp90, and ADCp99 of the FM group were all lower than those of the nFM group (P < 0.05), there was significant difference in location and sex (P < 0.05). Multivariate logistic regression showed ADCp99 (P < 0.001) and location (P = 0.007) were the most valuable parameters in the discrimination of FM and nFM WHO grade 1 meningiomas. The diagnostic efficacy was achieved an AUC of 0.817(95% CI, 0.759-0.866), the sensitivity, specificity, accuracy, positive predictive value, and negative predictive value were 66.4%, 83.6%, 75.0%, 80.2%, and 71.3%, respectively.Conclusion: ADC histogram analysis is helpful in noninvasive differentiation of FM and nFM WHO grade 1 meningiomas, and combined ADCp99 and location have the best diagnostic efficacy.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Apparent Diffusion Coefficient in Predicting the Preoperative Grade of Meningiomas
    Atalay, Basak
    Ediz, Suna Sahin
    Ozbay, Nurver Ozel
    [J]. JCPSP-JOURNAL OF THE COLLEGE OF PHYSICIANS AND SURGEONS PAKISTAN, 2020, 30 (11): : 1126 - 1132
  • [2] Histogram Analysis Parameters Apparent Diffusion Coefficient for Distinguishing High and Low-Grade Meningiomas: A Multicenter Study
    Surov, Alexey
    Ginat, Daniel T.
    Lim, Tchoyoson
    Cabada, Teresa
    Baskan, Ozdil
    Schob, Stefan
    Meyer, Hans Jonas
    Gihr, Georg Alexander
    Horvath-Rizea, Diana
    Hamerla, Gordian
    Hoffmann, Karl Titus
    Wienke, Andreas
    [J]. TRANSLATIONAL ONCOLOGY, 2018, 11 (05): : 1074 - 1079
  • [3] Differentiation of fibroblastic meningiomas from other benign subtypes using diffusion tensor imaging
    Tropine, Andrei
    Dellani, Paulo D.
    Glaser, Martin
    Bohl, Juergen
    Ploener, Till
    Vucurevic, Goran
    Perneczky, Axel
    Stoeter, Peter
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2007, 25 (04) : 703 - 708
  • [4] Apparent diffusion coefficient histogram analysis for differentiating solid ovarian tumors
    Liu, Renwei
    Li, Ruifeng
    Fang, Jinzhi
    Deng, Kan
    Chen, Cuimei
    Li, Jianhua
    Wu, Zhiqing
    Zeng, Xiaoxu
    [J]. FRONTIERS IN ONCOLOGY, 2022, 12
  • [5] The value of whole tumor apparent diffusion coefficient histogram parameters in predicting meningiomas progesterone receptor expression
    Arbab, Shahdil
    Khalid, Waleed
    Kumar, Neeraj
    Rauf, Sameer Abdul
    [J]. NEUROSURGICAL REVIEW, 2024, 47 (01)
  • [6] The value of whole tumor apparent diffusion coefficient histogram parameters in predicting meningiomas progesterone receptor expression
    Zhao, Zhiyong
    Zhang, Jinglong
    Yuan, Shuai
    Zhang, He
    Yin, Hang
    Wang, Gang
    Pan, Yawen
    Li, Qiang
    [J]. NEUROSURGICAL REVIEW, 2024, 47 (01)
  • [7] ADC histogram analysis for adrenal tumor histogram analysis of apparent diffusion coefficient in differentiating adrenal adenoma from pheochromocytoma
    Umanodan, Tomokazu
    Fukukura, Yoshihiko
    Kumagae, Yuichi
    Shindo, Toshikazu
    Nakajo, Masatoyo
    Takumi, Koji
    Nakajo, Masanori
    Hakamada, Hiroto
    Umanodan, Aya
    Yoshiura, Takashi
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2017, 45 (04) : 1195 - 1203
  • [8] Histogram analysis in predicting the grade and histological subtype of meningiomas based on diffusion kurtosis imaging
    Chen, Xiaodan
    Lin, Lin
    Wu, Jie
    Yang, Guang
    Zhong, Tianjin
    Du, Xiaoqiang
    Chen, Zhiyong
    Xu, Ganggang
    Song, Yang
    Xue, Yunjing
    Duan, Qing
    [J]. ACTA RADIOLOGICA, 2020, 61 (09) : 1228 - 1239
  • [9] Histogram Analysis of Apparent Diffusion Coefficient in Differentiating Pancreatic Adenocarcinoma and Neuroendocrine Tumor
    Shindo, Toshikazu
    Fukukura, Yoshihiko
    Umanodan, Tomokazu
    Takumi, Koji
    Hakamada, Hiroto
    Nakajo, Masanori
    Umanodan, Aya
    Ideue, Junichi
    Kamimura, Kiyohisa
    Yoshiura, Takashi
    [J]. MEDICINE, 2016, 95 (04)
  • [10] Histogram analysis of apparent diffusion coefficient maps for differentiating malignant from benign parotid gland tumors
    Gao Ma
    Liu-Ning Zhu
    Guo-Yi Su
    Hao Hu
    Wen Qian
    Shou-Shan Bu
    Xiao-Quan Xu
    Fei-Yun Wu
    [J]. European Archives of Oto-Rhino-Laryngology, 2018, 275 : 2151 - 2157