Monitoring of Soybean Maturity Using UAV Remote Sensing and Deep Learning

被引:6
|
作者
Zhang, Shanxin [1 ]
Feng, Hao [1 ]
Han, Shaoyu [1 ,2 ]
Shi, Zhengkai [1 ]
Xu, Haoran [1 ]
Liu, Yang [2 ,3 ]
Feng, Haikuan [2 ,4 ]
Zhou, Chengquan [2 ,5 ]
Yue, Jibo [1 ]
机构
[1] Henan Agr Univ, Coll Informat & Management Sci, Zhengzhou 450002, Peoples R China
[2] Beijing Res Ctr Informat Technol Agr, Key Lab Quantitat Remote Sensing Agr Minist Agr, Beijing 100097, Peoples R China
[3] China Agr Univ, Key Lab Smart Agr Syst, Minist Educ, Beijing 100083, Peoples R China
[4] Nanjing Agr Univ, Coll Agr, Nanjing 210095, Peoples R China
[5] Zhejiang Acad Agr Sci ZAAS, Inst Agr Equipment, Hangzhou 310000, Peoples R China
来源
AGRICULTURE-BASEL | 2023年 / 13卷 / 01期
基金
中国国家自然科学基金;
关键词
unmanned aerial vehicle; soybean; convolutional neural network; deep learning; YIELD; DATE;
D O I
10.3390/agriculture13010110
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Soybean breeders must develop early-maturing, standard, and late-maturing varieties for planting at different latitudes to ensure that soybean plants fully utilize solar radiation. Therefore, timely monitoring of soybean breeding line maturity is crucial for soybean harvesting management and yield measurement. Currently, the widely used deep learning models focus more on extracting deep image features, whereas shallow image feature information is ignored. In this study, we designed a new convolutional neural network (CNN) architecture, called DS-SoybeanNet, to improve the performance of unmanned aerial vehicle (UAV)-based soybean maturity information monitoring. DS-SoybeanNet can extract and utilize both shallow and deep image features. We used a high-definition digital camera on board a UAV to collect high-definition soybean canopy digital images. A total of 2662 soybean canopy digital images were obtained from two soybean breeding fields (fields F1 and F2). We compared the soybean maturity classification accuracies of (i) conventional machine learning methods (support vector machine (SVM) and random forest (RF)), (ii) current deep learning methods (InceptionResNetV2, MobileNetV2, and ResNet50), and (iii) our proposed DS-SoybeanNet method. Our results show the following: (1) The conventional machine learning methods (SVM and RF) had faster calculation times than the deep learning methods (InceptionResNetV2, MobileNetV2, and ResNet50) and our proposed DS-SoybeanNet method. For example, the computation speed of RF was 0.03 s per 1000 images. However, the conventional machine learning methods had lower overall accuracies (field F2: 63.37-65.38%) than the proposed DS-SoybeanNet (Field F2: 86.26%). (2) The performances of the current deep learning and conventional machine learning methods notably decreased when tested on a new dataset. For example, the overall accuracies of MobileNetV2 for fields F1 and F2 were 97.52% and 52.75%, respectively. (3) The proposed DS-SoybeanNet model can provide high-performance soybean maturity classification results. It showed a computation speed of 11.770 s per 1000 images and overall accuracies for fields F1 and F2 of 99.19% and 86.26%, respectively.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Monitoring and zoning soybean maturity using UAV remote sensing
    Shi, Wenqiang
    Li, Yuhao
    Zhang, Wei
    Yu, Chuntao
    Zhao, Chen
    Qiu, Jinkai
    Industrial Crops and Products, 2024, 222
  • [2] UAV-Based Remote Sensing for Soybean FVC, LCC, and Maturity Monitoring
    Hu, Jingyu
    Yue, Jibo
    Xu, Xin
    Han, Shaoyu
    Sun, Tong
    Liu, Yang
    Feng, Haikuan
    Qiao, Hongbo
    AGRICULTURE-BASEL, 2023, 13 (03):
  • [3] A review on deep learning in UAV remote sensing
    Osco, Lucas Prado
    Marcato Junior, Jose
    Marques Ramos, Ana Paula
    de Castro Jorge, Lucio Andre
    Fatholahi, Sarah Narges
    Silva, Jonathan de Andrade
    Matsubara, Edson Takashi
    Pistori, Hemerson
    Goncalves, Wesley Nunes
    Li, Jonathan
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2021, 102
  • [4] Deep Learning and Remote Sensing: Detection of Dumping Waste Using UAV
    Youme, Ousmane
    Bayet, Theophile
    Dembele, Jean Marie
    Cambier, Christophe
    BIG DATA, IOT, AND AI FOR A SMARTER FUTURE, 2021, 185 : 361 - 369
  • [5] BUILDING RECOGNITION OF UAV REMOTE SENSING IMAGES BY DEEP LEARNING
    Zheng, Lijuan
    Ai, Ping
    Wu, Yu
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 1185 - 1188
  • [6] Monitoring soil nutrients using machine learning based on UAV hyperspectral remote sensing
    Liu, Kai
    Wang, Yufeng
    Peng, Zhiqing
    Xu, Xinxin
    Liu, Jingjing
    Song, Yuehui
    Di, Huige
    Hua, Dengxin
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2024, 45 (14) : 4897 - 4921
  • [7] Compressed Remote Sensing by Using Deep Learning
    Mirrashid, Alireza
    Beheshti, Ali Asghar
    2018 9TH INTERNATIONAL SYMPOSIUM ON TELECOMMUNICATIONS (IST), 2018, : 549 - 552
  • [8] Machine Learning Techniques to Predict Soybean Plant Density Using UAV and Satellite-Based Remote Sensing
    Habibi, Luthfan Nur
    Watanabe, Tomoya
    Matsui, Tsutomu
    Tanaka, Takashi S. T.
    REMOTE SENSING, 2021, 13 (13)
  • [9] Deep Learning for Monitoring Agricultural Drought in South Asia Using Remote Sensing Data
    Prodhan, Foyez Ahmed
    Zhang, Jiahua
    Yao, Fengmei
    Shi, Lamei
    Pangali Sharma, Til Prasad
    Zhang, Da
    Cao, Dan
    Zheng, Minxuan
    Ahmed, Naveed
    Mohana, Hasiba Pervin
    REMOTE SENSING, 2021, 13 (09)
  • [10] Deep learning and satellite remote sensing for biodiversity monitoring and conservation
    Pettorelli, Nathalie
    Williams, Jake
    Schulte To Buhne, Henrike
    Crowson, Merry
    REMOTE SENSING IN ECOLOGY AND CONSERVATION, 2024,