GRADIENT ESTIMATES OF A NONLINEAR LICHNEROWICZ EQUATION UNDER THE FINSLER-GEOMETRIC FLOW

被引:0
|
作者
Azami, Shahroud [1 ]
机构
[1] Imam Khomeini Int Univ, Fac Sci, Dept Pure Math, Qazvin, Iran
关键词
Gradient estimate; nonlinear heat equation; Finsler-geometric flow; HEAT-EQUATION; POSITIVE SOLUTIONS; HARNACK ESTIMATE;
D O I
10.2989/16073606.2022.2156406
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (M-n, F(t), m), t E [0, T], be a compact Finsler manifold with F(t) evolving by the Finsler-geometric flow eth g(x,t)/ eth t = 2h(x, t), where g(t) is the symmet-ric metric tensor associated with F, and h(t) is a symmetric (0, 2)-tensor. In this paper, we study gradient estimates for positive solutions of a nonlinear Lichnerowicz equation eth (t)u(x, t) = ?(m)u(x, t) + c(u(x, t))(p), (x, t) is an element of M x [0, T],under Finsler-geometric flow eth g(x,t)/ eth t = 2h(x, t), where c, p are two constants and p > 0. We obtain a global estimate and a Harnack estimate for positive solutions. Our results are also natural extension of similar results on Riemannian-geometric flow.
引用
收藏
页码:2489 / 2505
页数:17
相关论文
共 50 条