Corrosion mechanism and machinability of 7075-T6 aluminum alloy in high-speed cutting: With and without cryogenic treatment

被引:2
|
作者
Zhang, Ping [1 ,2 ,4 ]
Wang, Shunxiang [1 ]
Lin, Zhenyong [1 ]
Liu, Zehua [1 ,2 ]
Liu, Junling [3 ]
Mai, Qingqun [1 ]
Yue, Xiujie [5 ]
机构
[1] Guangdong Ocean Univ, Coll Mech & Power Engn, Zhanjiang, Peoples R China
[2] Qingdao Huanghai Univ, Coll Intelligent Mfg, Qingdao, Peoples R China
[3] Yantai Univ, Coll Intelligent Mfg, Qingdao, Peoples R China
[4] Guangdong Ocean Univ, Qingdao Huanghai Univ, 1 Haida Rd, Zhanjiang 524088, Peoples R China
[5] Qingdao Huanghai Univ, Qingdao 266033, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
7075-T6 aluminum alloy; corrosion resistance; cryogenic treatment; curface quality; cutting force; BEHAVIOR; MICROSTRUCTURE; COATINGS; STEEL; PEO;
D O I
10.1002/maco.202213515
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This work aims to explore the effect of cutting parameters on the cutting force, surface quality, and corrosion resistance of 7075-T6 aluminum alloy after and without cryogenic treatment. Cryogenically treated (T6-C) and noncryogenically treated (T6) 7075-T6 aluminum alloy samples are experimentally cut and electrochemically corroded in a 3.5% NaCl solution. SEM, EDS, and electrochemical analysis are carried out to examine how cutting parameters affect the cutting force, surface quality, and corrosion resistance of cryogenically treated 7075-T6 aluminum alloy. The results show that after cryogenic treatment, under different cutting speeds, the cutting force is up to 39.8% smaller than without cryogenic treatment; under different cutting depths and feed rates, the cutting force is up to 136% and 21.54% smaller, respectively. Cryogenic treatment dramatically reduces the cutting force in the cutting process. As cutting speed increases, machined surface quality becomes better; fewer corrosion products and cracks are induced. When the cutting depth is 1.5 mm, there are fewer plows and micro-cracks on the machined surface than under other parameters, but cutting depth does not affect corrosion morphology significantly. The size of corrosion products is up to 55 mu m smaller. The electrochemical analysis finds that at the cutting speed of 1500 m/min, after cryogenic treatment, the current density is 59.4% smaller than without cryogenic treatment; polarization resistance is 1.68 x 10(5)omega center dot cm(2) larger. At the cutting depth of 1.5 mm, after cryogenic treatment, the current density is 66.16% smaller; self-corrosion potential shifts 0.19 V toward the positive pole. At the feed rate of 0.06 mm/z, after cryogenic treatment, self-corrosion potential shifts 0.18 V toward the positive pole; polarization resistance is 10.7% larger. These parameters correspond to the best corrosion resistance.
引用
收藏
页码:872 / 886
页数:15
相关论文
共 50 条
  • [1] Effect of Cryogenic Treatment on Microstructural Evolution and Corrosion Mechanism in Subsurface Layer of 7075-T6 Aluminum Alloy during High-speed Machining
    Yue X.
    Zhang P.
    Gao Y.
    Sun Y.
    Wang Y.
    Surface Technology, 2024, 53 (10): : 134 - 143
  • [2] Characterization of surface integrity of 7075-T6 aluminum alloy subjected to microbiologically induced corrosion during high-speed machining
    College of Mechanical and Power Engineering, Guangdong Ocean University, Zhanjiang, China
    不详
    266520, China
    J Alloys Compd, 2024,
  • [3] Corrosion mechanism and characteristic of 7075-T6 aluminum alloy panel on airline aircraft
    Tianjin Key Laboratory for Civil Aircraft Airworthiness and Maintenance, Civil Aviation University of China, Tianjin 300300, China
    不详
    Jixie Gongcheng Xuebao, 2013, 8 (91-96):
  • [4] Research on Conventional and High-Speed Machining Cutting Force of 7075-T6 Aluminum Alloy Based on Finite Element Modeling and Simulation
    Wang, Zhijie
    Cao, Yan
    Gorbachev, Sergey
    Kuzin, Victor
    He, Weiliang
    Guo, Junde
    METALS, 2022, 12 (08)
  • [5] Effects of Quenching on Corrosion and Hardness of Aluminum Alloy 7075-T6
    Saberi, Leila
    Alfred, Samuel Onimpa
    Amiri, Mehdi
    ENERGIES, 2022, 15 (22)
  • [6] Effect of cutting parameters on the microstructure evolution and damage mechanism of 7075-T6 aluminum alloy in micro cutting
    Zhang, Ping
    Lin, Zhenyong
    Liu, Zehua
    Liu, Junling
    Mai, Qingqun
    Yue, Xiujie
    INTERNATIONAL JOURNAL OF DAMAGE MECHANICS, 2023, 32 (07) : 914 - 939
  • [7] Investigation of corrosion behaviour of hydrogenated 7075-T6 aluminum alloy
    El-Amoush, Amjad Saleh
    Journal of Alloys and Compounds, 2007, 443 (1-2): : 171 - 177
  • [8] Investigation of corrosion behaviour of hydrogenated 7075-T6 aluminum alloy
    Ei-Amoush, Amjad Saleh
    JOURNAL OF ALLOYS AND COMPOUNDS, 2007, 443 (1-2) : 171 - 177
  • [9] Fitting corrosion and fatigue behavior of aluminum alloy 7075-T6
    Sankaran, KK
    Perez, R
    Jata, KV
    ADVANCED MATERIALS & PROCESSES, 2000, 158 (02): : 53 - 54
  • [10] Tensile property for friction welded aluminum alloy 7075-T6 and 7075-T6
    Yu, Mihwa
    Ha, Hyunsu
    Kim, Taehyoung
    Lee, Dohee
    Kim, Yonjig
    Kim, Cheolsang
    Hong, Dongpyo
    MANUFACTURING SCIENCE AND TECHNOLOGY, PTS 1-3, 2011, 295-297 : 1925 - +