Single atomic cerium sites anchored on nitrogen-doped hollow carbon spheres for highly selective electroreduction of nitric oxide to ammonia

被引:77
|
作者
Zhang, Weiqing [1 ]
Qin, Xuhui [1 ]
Wei, Tianran [2 ]
Liu, Qian [3 ]
Luo, Jun [4 ]
Liu, Xijun [2 ]
机构
[1] Guangxi Med Univ Canc Hosp, Dept Res, Nanning 530021, Peoples R China
[2] Guangxi Univ, Sch Resource Environm & Mat, State Key Lab Featured Met Mat & Life cycle Safety, Nanning 530004, Peoples R China
[3] Chengdu Univ, Inst Adv Study, Chengdu 610106, Sichuan, Peoples R China
[4] Univ Elect Sci & Technol China, Shenzhen Inst Adv Study, ShenSi Lab, Shenzhen 518110, Peoples R China
基金
中国国家自然科学基金;
关键词
Ammonia electrosynthesis; Ambient conditions; Single atom electrocatalysis; Nitric oxide reduction reaction; Zn-NO battery; AMBIENT CONDITIONS; REDUCTION; FIXATION; OXYGEN; NANOCRYSTALS; OXIDATION; WATER;
D O I
10.1016/j.jcis.2023.02.026
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrocatalytic nitric oxide reduction reaction (NORR) at ambient environments not only offers a promis-ing strategy to yield ammonia (NH3) but also degrades the NO contaminant; however, its application depends on searching for high-performance catalysts. Herein, we present single atomic Ce sites anchored on nitrogen-doped hollow carbon spheres that are capable of electro-catalyzing NO reduction to NH3 in an acidic solution, achieving a maximal Faradaic efficiency of 91 % and a yield rate of 1023 lg h-1 mgcat.-1 at -0.7 V vs RHE for NH3 formation, both of which outperform these on Ce nanoclusters and approach the best-reported results. Meanwhile, the single atomic Ce catalyst shows good structural and electrochem-ical stability during the 30-h NO electrolysis. Furthermore, when the single atomic Ce catalyst was used as cathodic material in a proof-of-concept of Zn-NO battery, it delivers a maximal power density of 3.4 mW cm-2 and a high NH3 yield rate of 309 lg h-1 mgcat.-1. Theoretical simulations suggest that the Ce-N4 active moiety can not only activate NO molecules via a strong electronic interaction but also reduce the free energy barrier of *NO transition to *NOH intermediate as the limiting step, and therefore boosting the NORR kinetics and suppressing the competitive hydrogen evolution. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:650 / 657
页数:8
相关论文
共 50 条
  • [1] Selective electrosynthesis of ammonia via nitric oxide electroreduction catalyzed by copper nanowires infused in nitrogen-doped carbon nanorods
    Dhanabal, Dinesh
    Song, Yuyeon
    Jang, Seoyoung
    Shanmugam, Sangaraju
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2025, 361
  • [2] Porous nitrogen-doped carbon anchored with highly dispersed nickel active sites for efficient carbon dioxide electroreduction
    Bai, Wenjiang
    Xiao, Linfeng
    Cheng, Guoyou
    Ma, Junqiang
    Chang, Fengqin
    Guo, Cao
    An, Xuguang
    Hu, Guangzhi
    MATERIALS TODAY COMMUNICATIONS, 2025, 45
  • [3] Transition Metal Nanoparticle-Embedded Nitrogen-Doped Carbon Nanorods as an Efficient Electrocatalyst for Selective Electroreduction of Nitric Oxide to Ammonia
    Dhanabal, Dinesh
    Markandaraj, Sridhar Sethuram
    Shanmugam, Sangaraju
    ACS CATALYSIS, 2023, 13 (13) : 9136 - 9149
  • [4] Nitrogen-doped hollow carbon spheres for supercapacitors
    Chen, Aibing
    Wang, Yuying
    Yu, Yifeng
    Sun, Hexu
    Li, Yunqian
    Xia, Kechan
    Li, Shuhui
    JOURNAL OF MATERIALS SCIENCE, 2017, 52 (06) : 3153 - 3161
  • [5] Nitrogen-doped hollow carbon spheres for supercapacitors
    Aibing Chen
    Yuying Wang
    Yifeng Yu
    Hexu Sun
    Yunqian Li
    Kechan Xia
    Shuhui Li
    Journal of Materials Science, 2017, 52 : 3153 - 3161
  • [6] Hollow carbon spheres anchored with nitrogen-doped carbon dots for high-performance supercapacitors
    Dai, Jiaxu
    Li, Guochang
    Hu, Yaoping
    Han, Lei
    JOURNAL OF ENERGY STORAGE, 2024, 83
  • [7] Hollow Nitrogen-Doped Carbon Spheres as Zincophilic Sites for Zn Flow Battery
    Shi, Han
    Pan, Hui
    Kang, Peng
    CHEMISTRY-AN ASIAN JOURNAL, 2024, 19 (08)
  • [8] Metal Oxide Clusters on Nitrogen-Doped Carbon are Highly Selective for CO2 Electroreduction to CO
    Li, Jingkun
    Zitolo, Andrea
    Garces-Pineda, Felipe A.
    Asset, Tristan
    Kodali, Mounika
    Tang, PengYi
    Arbiol, Jordi
    Ramon Galan-Mascaros, Jose
    Atanassov, Plamen
    Zenyuk, Iryna, V
    Sougrati, Moulay Tahar
    Jaouen, Frederic
    ACS CATALYSIS, 2021, 11 (15): : 10028 - 10042
  • [9] Nitrogen-doped hollow carbon spheres for supercapacitors application
    Chen, Aibing (chen_ab@163.com), 1600, Elsevier Ltd (688):
  • [10] Nitrogen-doped hollow carbon spheres for supercapacitors application
    Chen, Aibing
    Li, Yunqian
    Yu, Yifeng
    Ren, Shaofeng
    Wang, Yuying
    Xia, Kechan
    Li, Shuhui
    JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 688 : 878 - 884