Harnack inequality and interior regularity for Markov processes with degenerate jump kernels

被引:1
|
作者
Kim, Panki [1 ]
Song, Renming [2 ]
Vondracek, Zoran
机构
[1] Seoul Natl Univ, Res Inst Math, Dept Math Sci, Seoul 08826, South Korea
[2] Univ Illinois, Dept Math, Urbana, IL 61801 USA
基金
新加坡国家研究基金会;
关键词
Jump processes; Jump kernel with boundary part; Harnack inequality; NONLOCAL OPERATORS;
D O I
10.1016/j.jde.2023.02.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study interior potential-theoretic properties of purely discontinuous Markov processes in proper open subsets D subset of Rd. The jump kernels of the processes may be degenerate at the boundary in the sense that they may vanish or blow up at the boundary. Under certain natural conditions on the jump kernel, we show that the scale invariant Harnack inequality holds for any proper open subset D subset of Rd and prove some interior regularity of harmonic functions. We also prove a Dynkin-type formula and several other interior results.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:138 / 180
页数:43
相关论文
共 50 条
  • [1] Harnack inequality and regularity for degenerate quasilinear elliptic equations
    Di Fazio, G.
    Fanciullo, M. S.
    Zamboni, P.
    MATHEMATISCHE ZEITSCHRIFT, 2010, 264 (03) : 679 - 695
  • [2] Harnack inequality and regularity for degenerate quasilinear elliptic equations
    G. Di Fazio
    M. S. Fanciullo
    P. Zamboni
    Mathematische Zeitschrift, 2010, 264 : 679 - 695
  • [3] A HARNACK INEQUALITY APPROACH TO THE INTERIOR REGULARITY OF PARABOLIC EQUATIONS
    CAFFARELLI, LA
    WANG, L
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1993, 42 (01) : 159 - 165
  • [4] A HARNACK INEQUALITY APPROACH TO THE INTERIOR REGULARITY OF ELLIPTIC-EQUATIONS
    CAFFARELLI, LA
    WANG, L
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1993, 42 (01) : 145 - 157
  • [5] Harnack inequality for some classes of Markov processes
    Renming Song
    Zoran Vondraček
    Mathematische Zeitschrift, 2004, 246 : 177 - 202
  • [6] Harnack inequality for some classes of Markov processes
    Song, RM
    Vondracek, Z
    MATHEMATISCHE ZEITSCHRIFT, 2004, 246 (1-2) : 177 - 202
  • [7] BOUNDARY HARNACK INEQUALITY FOR MARKOV PROCESSES WITH JUMPS
    Bogdan, Krzysztof
    Kumagai, Takashi
    Kwasnicki, Mateusz
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (01) : 477 - 517
  • [8] REGULARITY FOR DEGENERATE PURE JUMP-PROCESSES
    LEANDRE, R
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1985, 21 (02): : 125 - 146
  • [9] A HARNACK INEQUALITY APPROACH TO THE INTERIOR REGULARITY GRADIENT ESTIMATES OF GEOMETRIC EQUATIONS
    Caffarelli, Luis A.
    Wang Lihe
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2006, 19 (01): : 16 - 25
  • [10] Regularity of models associated with Markov jump processes
    Jedidi, Wissem
    OPEN MATHEMATICS, 2022, 20 (01): : 911 - 930