Near real-time yield forecasting of winter wheat using Sentinel-2 imagery at the early stages

被引:5
|
作者
Liao, Chunhua [1 ,2 ]
Wang, Jinfei [2 ,3 ]
Shan, Bo [2 ,4 ]
Song, Yang [2 ]
He, Yongjun [2 ]
Dong, Taifeng [5 ]
机构
[1] Sun Yat Sen Univ, Sch Geospatial Engn & Sci, Zhuhai 519082, Guangdong, Peoples R China
[2] Univ Western Ontario, Dept Geog & Environm, London, ON N6A 3K7, Canada
[3] Univ Western Ontario, Inst Earth & Space Explorat, London, ON N6A 3K7, Canada
[4] A&L Canada Labs Inc, London, ON N5V 3P5, Canada
[5] Ottawa Res & Dev Ctr, Agr & Agrifood Canada, 960 Carling Ave, Ottawa, ON K1A 0C6, Canada
基金
中国国家自然科学基金;
关键词
Wheat yield prediction; Near real-time; Domain adaptation; Sentinel-2; Within-field scale; SENSED VEGETATION INDEXES; GRAIN-YIELD; SERIES;
D O I
10.1007/s11119-022-09975-3
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Winter wheat is one of the main crops in Canada. Near real-time forecasting of within-field variability of yield in winter wheat at the early stages is essential for precision farming. However, the crop yield modelling based on high spatial resolution satellite data is generally affected by the lack of continuous satellite observations, resulting in reducing the generalization ability of the models and increasing the difficulty of near real-time crop yield forecasting at the early stages. In this study, the correlations between Sentinel-2 data (vegetation indices and reflectance) and yield data collected by combine harvester were investigated and a generalized multivariate linear regression (MLR) model was built and tested with data acquired in different years. In addition, three simple unsupervised domain adaptation (DA) methods were adopted for improving the generalization ability of yield prediction. The winter wheat yield prediction using multiple vegetation indices showed higher accuracy than using single vegetation index. The optimum stage for winter wheat yield forecasting varied with different fields when using vegetation indices, while it was consistent when using multispectral reflectance and the optimum stage for winter wheat yield prediction was at the end of flowering stage. This study demonstrated that the simple mean matching (MM) performed better than other DA methods and it was found that "DA then MLR at the optimum stage " performed better than "MLR directly at the early stages " for winter wheat yield forecasting at the early stages. The results indicated that the DA had a great potential in near real-time crop yield forecasting at the early stages.
引用
收藏
页码:807 / 829
页数:23
相关论文
共 50 条
  • [1] Near real-time yield forecasting of winter wheat using Sentinel-2 imagery at the early stages
    Chunhua Liao
    Jinfei Wang
    Bo Shan
    Yang Song
    Yongjun He
    Taifeng Dong
    Precision Agriculture, 2023, 24 : 807 - 829
  • [2] Near real-time detection and forecasting of within-field phenology of winter wheat and corn using Sentinel-2 time-series data
    Liao, Chunhua
    Wang, Jinfei
    Shan, Bo
    Shang, Jiali
    Dong, Taifeng
    He, Yongjun
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2023, 196 : 105 - 119
  • [3] Wheat yield estimation using fused Cubesat and Sentinel-2 imagery
    Sadeh, Y.
    Zhu, X.
    Dunkerley, D.
    Walker, J. P.
    Chenu, K.
    PRECISION AGRICULTURE'21, 2021, : 575 - 582
  • [4] A stochastic modelling approach for real-time forecasting of winter wheat yield
    Bannayan, M
    Crout, NMJ
    FIELD CROPS RESEARCH, 1999, 62 (01) : 85 - 95
  • [5] Modeling of Durum Wheat Yield Based on Sentinel-2 Imagery
    Cavalaris, Chris
    Megoudi, Sofia
    Maxouri, Maria
    Anatolitis, Konstantinos
    Sifakis, Marios
    Levizou, Efi
    Kyparissis, Aris
    AGRONOMY-BASEL, 2021, 11 (08):
  • [6] WINTER WHEAT YIELD ASSESSMENT USING LANDSAT 8 AND SENTINEL-2 DATA
    Skakun, S.
    Franch, B.
    Vermote, E.
    Roger, J. -C.
    Justice, C.
    Masek, J.
    Murphy, E.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 5964 - 5967
  • [7] A multitemporal index for the automatic identification of winter wheat based on Sentinel-2 imagery time series
    Xie, Yi
    Shi, Shujing
    Xun, Lan
    Wang, Pengxin
    GISCIENCE & REMOTE SENSING, 2023, 60 (01)
  • [8] Early mapping of winter wheat in Henan province of China using time series of Sentinel-2 data
    Huang, Xianda
    Huang, Jianxi
    Li, Xuecao
    Shen, Qianrong
    Chen, Zhengchao
    GISCIENCE & REMOTE SENSING, 2022, 59 (01) : 1534 - 1549
  • [9] Early-Season Mapping of Winter Crops Using Sentinel-2 Optical Imagery
    Tian, Haifeng
    Wang, Yongjiu
    Chen, Ting
    Zhang, Lijun
    Qin, Yaochen
    REMOTE SENSING, 2021, 13 (19)
  • [10] Crop Water Content of Winter Wheat Revealed with Sentinel-1 and Sentinel-2 Imagery
    Han, Dong
    Liu, Shuaibing
    Du, Ying
    Xie, Xinrui
    Fan, Lingling
    Lei, Lei
    Li, Zhenhong
    Yang, Hao
    Yang, Guijun
    SENSORS, 2019, 19 (18)