Xianglian Pill attenuates ulcerative colitis through TLR4/MyD88/NF-κB signaling pathway

被引:33
|
作者
Dai, Yuxin [1 ,2 ]
Lu, Qiulu [3 ]
Li, Peiyi [1 ,2 ]
Zhu, Junyu [1 ]
Jiang, Jiaxin [1 ]
Zhao, Tong [1 ]
Hu, Yue [1 ]
Ding, Kang [4 ]
Zhao, Min [1 ]
机构
[1] Nanjing Univ Chinese Med, Sch Chinese Med, Sch Integrated Chinese & Western Med, Nanjing 210023, Peoples R China
[2] Nanjing Univ Chinese Med, Sch Clin Med 1, Nanjing 210023, Peoples R China
[3] Kunshan Hosp Tradit Chinese Med, Dept Colorectal Surg, Suzhou 215300, Peoples R China
[4] Suqian Hosp Tradit Chinese Med, Dept Colorectal Surg, Suqian 223801, Peoples R China
关键词
Xianglian pill (XLP); Ulcerative colitis (UC); Pyroptosis; Inflammation; Gene knockout;
D O I
10.1016/j.jep.2022.115690
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Ethnopharmacological relevance: Xianglian Pill (XLP) is a classical Chinese medicine prescription applied for controlling ulcerative colitis (UC). Whereas, the underlying mechanism remains unclear. Aim of the study: The present work was aimed to investigate the mechanism of XLP in dextran sulfate sodium (DSS)-induced UC via the Toll Like Receptor 4 (TLR4)/Myeloid Differentiation factor 88 (MyD88)/Nuclear Factor kappa-B (NF-kappa B) signaling in mice. Materials and methods: The major components of XLP were detected by high-performance liquid chromatographydiode array detection (HPLC-DAD). The ulcerative colitis model was induced by DSS in mice. 5-Amino Salicylic Acid (5-ASA) group and XLP group were intragastrically treated. Disease activity index (DAI) and colon length were monitored and hematoxylin-eosin (HE) staining was conducted. Gasdermin D (GSDMD)-N and TLR4 expressions in colon tissues were visualized by immunofluorescence. TLR4 mRNA was measured by Real Time Quantitative PCR (RT-qPCR). The expressions of NOD-like receptor thermal protein domain associated protein 3 (NLRP3), active-caspase-1, GSDMD-N, TLR4, MYD88, NF-kappa B, p-NF-kappa B, and the ubiquitination of TLR4 in colon tissues were detected by Western blot. Myeloperoxidase (MPO) enzyme activity was examined and serum inflammatory factors Interleukin (IL)-1 beta, IL-6, Tumor Necrosis Factor-alpha (TNF-alpha), and IL-18 were determined by Enzyme-linked Immunosorbent Assay (ELISA). TLR4(-/-) mice were applied for verifying the mechanism of XLP attenuated DSS symptoms. Results: The XLP treatment extended colon length, reduced DAI, and attenuated histopathological alteration in DSS-induced mice. XLP administration suppressed MPO activity and reduced the content of IL-1 beta, IL-6, TNF-alpha and IL-18 in serum. XLP also inhibited the expression levels of GSDMD-N, TLR4, NLRP3, active-caspase-1, MyD88, p-NF-kappa B/NF-kappa B in colon tissues of DSS-induced mice. TLR4(-/-) mice proved that TLR4 was involved in XLP-mediated beneficial effect on DSS-induced ulcerative colitis. Conclusions: XLP might treat ulcerative colitis by regulating the TLR4/MyD88/NF-kappa B signaling pathway.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Bioactive glass in the treatment of ulcerative colitis to regulate the TLR4/MyD88/NF-κB pathway
    Wang, Wenhao
    Jia, Shengyuan
    Miao, Guohou
    Sun, Zhenmin
    Yu, Feng
    Gao, Zhixing
    Li, Yuli
    [J]. BIOMATERIALS ADVANCES, 2023, 152
  • [2] Glabridin attenuates atopic dermatitis progression through downregulating the TLR4/MyD88/NF-κB signaling pathway
    Jing Chang
    Lin Wang
    Minna Zhang
    Zengjiao Lai
    [J]. Genes & Genomics, 2021, 43 : 847 - 855
  • [3] Glabridin attenuates atopic dermatitis progression through downregulating the TLR4/MyD88/NF-κB signaling pathway
    Chang, Jing
    Wang, Lin
    Zhang, Minna
    Lai, Zengjiao
    [J]. GENES & GENOMICS, 2021, 43 (08) : 847 - 855
  • [4] MiR-146a regulates the development of ulcerative colitis via mediating the TLR4/MyD88/NF-κB signaling pathway
    Wang, J-P
    Dong, L-N
    Wang, M.
    Gu, J.
    Zhao, Y-Q
    [J]. EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2019, 23 (05) : 2151 - 2157
  • [5] Exploring the Mechanism of Indigo Naturalis in the Treatment of Ulcerative Colitis Based on TLR4/MyD88/NF-κB Signaling Pathway and Gut Microbiota
    Yang, Qi-yue
    Ma, Le-le
    Zhang, Chen
    Lin, Jun-zhi
    Han, Li
    He, Ya-nan
    Xie, Chun-guang
    [J]. FRONTIERS IN PHARMACOLOGY, 2021, 12
  • [6] MECHANISM OF DENDROBINE ON DIABETIC RETINOPATHY THROUGH TLR4/MYD88/NF-κB PATHWAY
    Guo, Xixi
    Li, Chunxia
    [J]. MEDICINE, 2024, 103 (14)
  • [7] Exercise Training Attenuates Hypertension Through TLR4/MyD88/NF-κB Signaling in the Hypothalamic Paraventricular Nucleus
    Qi, Jie
    Yu, Xiao-Jing
    Fu, Li-Yan
    Liu, Kai-Li
    Gao, Tian-Tian
    Tu, Jia-Wei
    Kang, Kai B.
    Shi, Xiao-Lian
    Li, Hong-Bao
    Li, Ying
    Kang, Yu-Ming
    [J]. FRONTIERS IN NEUROSCIENCE, 2019, 13
  • [8] Apigenin attenuates inflammatory response in allergic rhinitis mice by inhibiting the TLR4/MyD88/NF-κB signaling pathway
    Li, Huajing
    Zhang, Hongmei
    Zhao, Hua
    [J]. ENVIRONMENTAL TOXICOLOGY, 2023, 38 (02) : 253 - 265
  • [9] FGF10 Attenuates Experimental Traumatic Brain Injury through TLR4/MyD88/NF-κB Pathway
    Hou, Qinhan
    Chen, Hongmou
    Liu, Quan
    Yan, Xianlei
    [J]. CELLS TISSUES ORGANS, 2021, 209 (4-6) : 248 - 256
  • [10] Jatrorrhizine Alleviates DSS-Induced Ulcerative Colitis by Regulating the Intestinal Barrier Function and Inhibiting TLR4/MyD88/NF-κB Signaling Pathway
    Niu, Shengqi
    Jing, Manyi
    Wen, Jianxia
    Wei, Shizhang
    Li, Haotian
    Li, Xing
    Ma, Xiao
    Zhao, Yanling
    [J]. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2022, 2022