RGO-Induced Flower-like Ni-MOF In Situ Self-Assembled Electrodes for High-Performance Hybrid Supercapacitors

被引:5
|
作者
Sun, Zhe [1 ,2 ,3 ,4 ]
Wang, Yao [1 ,2 ,3 ]
Yang, Lifei [1 ,2 ,3 ]
Liu, Jingshuai [1 ,2 ,3 ]
Qi, Houjuan [1 ,2 ,3 ]
Huang, Zhanhua [1 ,2 ,3 ]
Wang, Xiaolei [4 ]
机构
[1] Northeast Forestry Univ, Key Lab Biobased Mat Sci & Technol, Harbin 150040, Heilongjiang, Peoples R China
[2] Northeast Forestry Univ, Coll Mat Sci & Engn, Harbin 150040, Heilongjiang, Peoples R China
[3] Northeast Forestry Univ, Engn Res Ctr Adv Wooden Mat, Minist Educ, Harbin 150040, Heilongjiang, Peoples R China
[4] Univ Alberta, Dept Chem & Mat Engn, 9211-116 St NW, Edmonton, AB T6G 1H9, Canada
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
supercapacitors; induced; self-assembly; metal-organicframework; RGO; REDUCED GRAPHENE OXIDE; CARBON NANOTUBES; NANOCOMPOSITE; COMPOSITES;
D O I
10.1021/acsami.3c14046
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Currently, the primary bottlenecks that hinder the widespread application of supercapacitors are low energy density and narrow potential windows. Herein, the hybrid supercapacitor with high energy density and wide potential window is constructed via an in situ self-assembly method employing RGO-induced flower-like MOF(Ni). Benefiting from the synergistic effect between RGO and MOF(Ni), the interfacial interactions are effectively improved, and the contact area with the electrolyte is enhanced, which increases the ion transfer kinetics and overall electrochemical performance. The MOF(Ni)@RGO electrode exhibits a specific capacitance of 1267.73 F g(-1) at a current density of 1 A g(-1). Crucially, the assembled MOF(Ni)@RGO//BC with a broad potential window and good stability employing a MOF(Ni)@RGO anode and biomass carbon cathode, combined with a 2 M PVA-KOH gel-electrolyte, achieves a maximum energy density of 70.16 Wh kg(-1) at a power density of 2200.09 W kg(-1), outperforming most reported supercapacitors. This hybrid supercapacitor exhibits excellent stability and high energy density, providing a novel strategy for further large-scale applications.
引用
收藏
页码:584 / 593
页数:10
相关论文
共 50 条
  • [1] Self-assembled Ni/NiO/RGO heterostructures for high-performance supercapacitors
    Zhu, Yachao
    Chu, Wei
    Wang, Ning
    Lin, Tao
    Yang, Wen
    Wen, Jie
    Zhao, X. S.
    RSC ADVANCES, 2015, 5 (95) : 77958 - 77964
  • [2] Flower-Like NiCo/rGO Effective Nanocomposite for High-Performance Supercapacitors
    Qin, Fang
    Yan, Yuqing
    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2024, 27 (34)
  • [3] MXenes induced formation of Ni-MOF microbelts for high-performance supercapacitors
    Zhang, Xu
    Yang, Shixuan
    Lu, Wang
    Lei, Da
    Tian, Yuhan
    Guo, Minggang
    Mi, Panpan
    Qu, Ning
    Zhao, Yingyuan
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 592 : 95 - 102
  • [4] Integration of Marigold 3D flower-like Ni-MOF self-assembled on MWCNTs via microwave irradiation for high-performance electrocatalytic alcohol oxidation and oxygen evolution reactions
    Sreekanth, T. V. M.
    Dillip, G. R.
    Nagajyothi, P. C.
    Yoo, K.
    Kim, J.
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2021, 285
  • [5] A NiMoS flower-like structure with self-assembled nanosheets as high-performance hydrodesulfurization catalysts
    Lai, Weikun
    Chen, Zhou
    Zhu, Jianping
    Yang, Lefu
    Zheng, Jinbao
    Yi, Xiaodong
    Fang, Weiping
    NANOSCALE, 2016, 8 (06) : 3823 - 3833
  • [6] Facile synthesis of cuboid Ni-MOF for high-performance supercapacitors
    Gao, Shuwen
    Sui, Yanwei
    Wei, Fuxiang
    Qi, Jiqiu
    Meng, Qingkun
    He, Yezeng
    JOURNAL OF MATERIALS SCIENCE, 2018, 53 (09) : 6807 - 6818
  • [7] A new promising Ni-MOF superstructure for high-performance supercapacitors
    Yang, Chengyu
    Li, Xiaoyu
    Yu, Ling
    Liu, Xingjiang
    Yang, Jie
    Wei, Mingdeng
    CHEMICAL COMMUNICATIONS, 2020, 56 (12) : 1803 - 1806
  • [8] Facile synthesis of cuboid Ni-MOF for high-performance supercapacitors
    Shuwen Gao
    Yanwei Sui
    Fuxiang Wei
    Jiqiu Qi
    Qingkun Meng
    Yezeng He
    Journal of Materials Science, 2018, 53 : 6807 - 6818
  • [9] The flower-like Ni-MOF modified BiOBr nanosheets with enhancing photocatalytic degradation performance
    Lu, Ting
    Xiao, Xinyan
    Wang, Fei
    Cheng, Xia
    Zhang, Yu
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2024, 452
  • [10] Novel flower-like MnCo2O4 microstructure self-assembled by ultrathin nanoflakes on the microspheres for high-performance supercapacitors
    Che, Hongwei
    Wang, Yuqiao
    Mao, Yuanxin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 680 : 586 - 594