Apollonian de Casteljau-type algorithms for complex rational Bezier curves

被引:1
|
作者
Juettler, Bert [1 ,3 ]
Schicho, Josef [2 ,3 ]
Sir, Zbynek [4 ]
机构
[1] Johannes Kepler Univ Linz, Inst Appl Geometry, Altenberger Str 69, A-4040 Linz, Austria
[2] Johannes Kepler Univ Linz, RISC, Altenberger Str 69, A-4040 Linz, Austria
[3] Radon Inst Computat & Appl Math, Altenberger Str 69, A-4040 Linz, Austria
[4] Charles Univ Prague, Fac Math & Phys, Sokolovska 83, Prague 18675, Czech Republic
关键词
de Casteljau algorithm; Complex rational curve; Bi-polar coordinates; Mobius transformation; Farin points; RIEMANNIAN-MANIFOLDS;
D O I
10.1016/j.cagd.2023.102254
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We describe a new de Casteljau-type algorithm for complex rational Bezier curves. After proving that these curves exhibit the maximal possible circularity, we construct their points via a de Casteljau-type algorithm over complex numbers. Consequently, the line segments that correspond to convex linear combinations in affine spaces are replaced by circular arcs. In difference to the algorithm of Sanchez-Reyes (2009), the construction of all the points is governed by (generically complex) roots of the denominator, using one of them for each level. Moreover, one of the bi-polar coordinates is fixed at each level, independently of the parameter value. A rational curve of the complex degree n admits generically n! distinct de Casteljau-type algorithms, corresponding to the different orderings of the denominator's roots.(c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
引用
收藏
页数:9
相关论文
共 12 条