Regularity of the spatially homogenous fractional Kramers-Fokker-Planck equation

被引:0
|
作者
Xu, Chao-Jiang
Xu, Yan [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Sch Math, Nanjing 210016, Peoples R China
关键词
Kramers-Fokker-Planck equation; Gevrey regularity; Gelfand-Shilov space; EQUILIBRIUM; TREND;
D O I
10.1016/j.jmaa.2023.127496
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Cauchy problem of the spatially homogenous fractional KramersFokker-Planck equation and show that the solution enjoys Gevrey regularity and decays estimation with an L2 initial datum for positive time. & COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] GENERALIZED KRAMERS-FOKKER-PLANCK EQUATION
    BASHKIROV, AG
    ZUBAREV, DN
    PHYSICA, 1970, 48 (01): : 137 - +
  • [2] Kramers-Fokker-Planck equation for polyatomic molecules
    Nagaoka, M
    Okamoto, T
    Maruyama, Y
    JOURNAL OF CHEMICAL PHYSICS, 2002, 117 (12): : 5594 - 5606
  • [3] Semiclassical analysis for the Kramers-Fokker-Planck equation
    Hérau, F
    Sjöstrand, J
    Stolk, CC
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2005, 30 (4-6) : 689 - 760
  • [4] On the Kramers-Fokker-Planck equation with decreasing potentials in dimension one
    Novak, Radek
    Wang, Xue Ping
    JOURNAL OF SPECTRAL THEORY, 2020, 10 (01) : 1 - 32
  • [5] Kramers-Fokker-Planck operators with homogeneous potentials
    Ben Said, Mona
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (02) : 914 - 927
  • [6] Exact solution of a generalized Kramers-Fokker-Planck equation retaining retardation effects
    Friedrich, R.
    Jenko, F.
    Baule, A.
    Eule, S.
    PHYSICAL REVIEW E, 2006, 74 (04):
  • [7] Tunnel effect for Kramers-Fokker-Planck type operators
    Herau, Frederic
    Hitrik, Michael
    Sjostrand, Johannes
    ANNALES HENRI POINCARE, 2008, 9 (02): : 209 - 274
  • [8] TUNNEL EFFECT AND SYMMETRIES FOR KRAMERS-FOKKER-PLANCK TYPE OPERATORS
    Herau, Frederic
    Hitrik, Michael
    Sjoestrand, Johannes
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2011, 10 (03) : 567 - 634
  • [9] MAXIMAL ESTIMATES FOR THE KRAMERS-FOKKER-PLANCK OPERATOR WITH ELECTROMAGNETIC FIELD
    Helffer, Bernard
    Karaki, Zeinab
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2022, 150 (01): : 1 - 16
  • [10] Quaternionic structure and analysis of some Kramers-Fokker-Planck operators
    Ben Said, Mona
    Nier, Francis
    Viola, Joe
    ASYMPTOTIC ANALYSIS, 2020, 119 (1-2) : 87 - 116