Development of machine learning analyses with graph neural network for the WASA-FRS experiment

被引:0
|
作者
Ekawa, H. [1 ]
Dou, W. [1 ,2 ]
Gao, Y. [1 ,3 ,4 ]
He, Y. [1 ,5 ]
Kasagi, A. [1 ,6 ]
Liu, E. [1 ,3 ,4 ]
Muneem, A. [1 ,7 ]
Nakagawa, M. [1 ]
Rappold, C. [8 ]
Saito, N. [1 ]
Saito, T. R. [1 ,5 ,9 ]
Taki, M. [10 ]
Tanaka, Y. K. [1 ]
Wang, H. [1 ]
Yoshida, J. [1 ,11 ]
机构
[1] RIKEN, High Energy Nucl Phys Lab, Cluster Pioneering Res, Wako, Japan
[2] Saitama Univ, Dept Phys, Saitama, Japan
[3] Chinese Acad Sci, Inst Modern Phys, Lanzhou, Peoples R China
[4] Univ Chinese Acad Sci, Beijing, Peoples R China
[5] Lanzhou Univ, Sch Nucl Sci & Technol, Lanzhou, Peoples R China
[6] Gifu Univ, Grad Sch Engn, Gifu, Japan
[7] Ghulam Ishaq Khan Inst Engn Sci & Technol, Fac Engn Sci, Topi, Pakistan
[8] CSIC, Inst Estruct Mat, Madrid, Spain
[9] GSI Helmholtz Ctr Heavy Ion Res, Darmstadt, Germany
[10] Rikkyo Univ, Grad Sch Artificial Intelligence & Sci, Tokyo, Japan
[11] Tohoku Univ, Dept Phys, Sendai, Japan
来源
EUROPEAN PHYSICAL JOURNAL A | 2023年 / 59卷 / 05期
关键词
BINDING-ENERGY VALUES; COLLISIONS;
D O I
10.1140/epja/s10050-023-01016-5
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The WASA-FRS experiment aims to reveal the nature of light A hypernuclei with heavy-ion beams. The lifetimes of hypernuclei are measured precisely from their decay lengths and kinematics. To reconstruct a p(- )track emitted from hypernuclear decay, track finding is an important issue. In this study, a machine learning analysis method with a graph neural network (GNN), which is a powerful tool for deducing the connection between data nodes, was developed to obtain track associations from numerous combinations of hit information provided in detectors based on a Monte Carlo simulation. An efficiency of 98% was achieved for tracking p(-) mesons using the developed GNN model. The GNN model can also estimate the charge and momentum of the particles of interest. More than 99.9% of the negative charged particles were correctly identified with a momentum accuracy of 6.3%.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Development of machine learning analyses with graph neural network for the WASA-FRS experiment
    H. Ekawa
    W. Dou
    Y. Gao
    Y. He
    A. Kasagi
    E. Liu
    A. Muneem
    M. Nakagawa
    C. Rappold
    N. Saito
    T. R. Saito
    M. Taki
    Y. K. Tanaka
    H. Wang
    J. Yoshida
    The European Physical Journal A, 59
  • [2] STATUS OF THE WASA-FRS HypHI EXPERIMENT: STUDY OF LIGHT HYPERNUCLEI AT GSI-FAIR
    Escrig S.
    Acta Physica Polonica B, Proceedings Supplement, 2024, 17 (03)
  • [3] A compact start time counter using plastic scintillators readout with MPPC arrays for the WASA-FRS HypHI experiment
    Liu, E.
    Drozd, V.
    Ekawa, H.
    Escrig, S.
    Gao, Y.
    He, Y.
    Kasagi, A.
    Nakagawa, M.
    Ong, H.
    Rappold, C.
    Sekiya, R.
    Saito, T. R.
    Tang, X.
    Tanaka, Y. K.
    Wang, H.
    Yanai, A.
    Achenbach, P.
    Alfaki, H. Alibrahim
    Amjad, F.
    Armstrong, M.
    Behr, K. -H.
    Benlliure, J.
    Brencic, Z.
    Dickel, T.
    Dubey, S.
    Feijoo-Fontan, M.
    Fujioka, H.
    Geissel, H.
    Goldenbaum, F.
    Grana Gonzalez, A.
    Haettner, E.
    Harakeh, M. N.
    Heggen, H.
    Hornung, C.
    Hubbard, N.
    Itahashi, K.
    Iwasaki, M.
    Kalantar-Nayestanaki, N.
    Kavatsyuk, M.
    Kazantseva, E.
    Khreptak, A.
    Kindler, B.
    Knoebel, R.
    Kollmus, H.
    Kostyleva, D.
    Kraft-Bermuth, S.
    Kurz, N.
    Lommel, B.
    Minami, S.
    Morrissey, D. J.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2024, 1064
  • [4] Multiscale graph neural network autoencoders for interpretable scientific machine learning
    Barwey, Shivam
    Shankar, Varun
    Viswanathan, Venkatasubramanian
    Maulik, Romit
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 495
  • [5] Reverse Graph Learning for Graph Neural Network
    Peng, Liang
    Hu, Rongyao
    Kong, Fei
    Gan, Jiangzhang
    Mo, Yujie
    Shi, Xiaoshuang
    Zhu, Xiaofeng
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (04) : 4530 - 4541
  • [6] Graph neural network and machine learning analysis of functional neuroimaging for understanding schizophrenia
    Gayathri Sunil
    Smruthi Gowtham
    Anurita Bose
    Samhitha Harish
    Gowri Srinivasa
    BMC Neuroscience, 25
  • [7] Graph neural network and machine learning analysis of functional neuroimaging for understanding schizophrenia
    Sunil, Gayathri
    Gowtham, Smruthi
    Bose, Anurita
    Harish, Samhitha
    Srinivasa, Gowri
    BMC NEUROSCIENCE, 2024, 25 (01)
  • [8] Learning to Reweight for Graph Neural Network
    Chen, Zhengyu
    Xiao, Teng
    Kuang, Kun
    Lv, Zheqi
    Zhang, Min
    Yang, Jinluan
    Lu, Chengqiang
    Yang, Hongxia
    Wu, Fei
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 8, 2024, : 8320 - 8328
  • [9] Accelerated prediction of perovskite material properties with classical machine learning and graph neural network
    Dong, Zhihao
    Ji, Yujin
    Li, Youyong
    MATERIALS EXPRESS, 2023, 13 (05) : 695 - 703
  • [10] A feature-enhanced knowledge graph neural network for machine learning method recommendation
    Zhang, Xin
    Guo, Junjie
    PeerJ Computer Science, 2024, 10 : 1 - 21