G-Circulant Quantum Markov Semigroups

被引:0
|
作者
Bolanos-Servin, Jorge R. [1 ]
Quezada, Roberto [1 ]
Vazquez-Becerra, Josue [1 ]
机构
[1] Univ Autonoma Metropolitana, Dept Matemat, Iztapalapa Campus,San Rafael Atlixco 186, Mexico City 09340, Mexico
来源
OPEN SYSTEMS & INFORMATION DYNAMICS | 2023年 / 30卷 / 01期
关键词
G-circulant matrix; G-circulant QMS; irreducibility; stationary state; circulant generator;
D O I
10.1142/S1230161223500026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We broaden the study of circulant Quantum Markov Semigroups (QMS). First, we introduce the notions of G-circulant GKSL generator and G-circulant QMS from the circulant case, corresponding to Z(n), to an arbitrary finite group G. Second, we show that each G-circulant GKSL generator has a block-diagonal representation Q circle times 1(G), where Q is a G-circulant matrix determined by some a is an element of l(2)(G). Denoting by H the subgroup of G generated by the support of alpha, we prove that Q has its own block-diagonal matrix representation (Q) over tilde circle times 1(r) where (Q) over tilde is an irreducible H-circulant matrix and r is the index of H in G. Finally, we exploit such block representations to characterize the structure, steady states, and asymptotic evolution of G-circulant QMSs.
引用
收藏
页数:29
相关论文
共 50 条