Soot Formation in Methane Pyrolysis Reactor: Modeling Soot Growth and Particle Characterization

被引:17
|
作者
Shirsath, Akash Bhimrao [1 ]
Mokashi, Manas [1 ]
Lott, Patrick [1 ]
Muller, Heinz [1 ]
Pashminehazar, Reihaneh [1 ]
Sheppard, Thomas [1 ]
Tischer, Steffen [2 ]
Maier, Lubow [2 ]
Grunwaldt, Jan-Dierk [1 ,2 ]
Deutschmann, Olaf [1 ,2 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Chem Technol & Polymer Chem, D-76131 Karlsruhe, Germany
[2] Karlsruhe Inst Technol KIT, Inst Catalysis Res & Technol, D-76344 Eggenstein leopoldshafen, Germany
来源
JOURNAL OF PHYSICAL CHEMISTRY A | 2023年 / 127卷 / 09期
关键词
CHEMICAL-VAPOR-DEPOSITION; NUMERICAL-SIMULATION; SIZE DISTRIBUTIONS; REACTION-MECHANISM; SURFACE GROWTH; CARBON; RAMAN; OXIDATION; FLAMES; PAH;
D O I
10.1021/acs.jpca.2c06878
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Methane pyrolysis is a very attractive and climate friendly process for hydrogen production and the sequestration of carbon as solid material. The formation of soot particles in methane pyrolysis reactors needs to be understood for technology scale-up calling for appropriate soot growth models. A mono disperse model is coupled with a plug flow reactor model and elementary-step reaction mechanisms to numerically simulate processes in methane pyrolysis reactors, namely, the chemical conversion of methane to hydrogen, formation of C-C coupling products and polycyclic aromatic hydrocarbons, and growth of soot particles. The soot growth model accounts for the effective structure of the aggregates by calculating the coagulation frequency from the free-molecular regime to the continuum regime. It predicts the soot mass, particle number, area, and volume concentration, along with the particle size distribution. For comparison, experiments on methane pyrolysis are carried out at different temperatures and collected soot samples are characterized using Raman spectroscopy, transmission electron microscopy (TEM), and dynamic light scattering (DLS).
引用
收藏
页码:2136 / 2147
页数:12
相关论文
共 50 条
  • [1] Influence of methane addition on soot formation in pyrolysis of acetylene
    Eremin, Alexander
    Mikheyeva, Ekaterina
    Selyakov, Ivan
    COMBUSTION AND FLAME, 2018, 193 : 83 - 91
  • [2] Detailed modeling of soot formation in hydrocarbon pyrolysis
    Krestinin, AV
    COMBUSTION AND FLAME, 2000, 121 (03) : 513 - 524
  • [3] Computer modeling of formation of soot precursors in the oxidation of methane
    Nemeth, A
    Heberger, K
    BERICHTE DER BUNSEN-GESELLSCHAFT-PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1998, 102 (02): : 257 - 261
  • [4] Soot formation in isothermal pyrolysis of carbon tetrachloride and its mixture with methane
    Shurupov, SV
    Tesner, PA
    COMBUSTION EXPLOSION AND SHOCK WAVES, 1999, 35 (04) : 386 - 392
  • [5] Revisit the PAH and soot formation in high-temperature pyrolysis of methane
    Wang, Zhi-Min
    Zhang, Xu
    Lei, Jie-Ming
    Jin, Kai-Ru
    Du-Wang
    Tian, Zhen-Yu
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2024, 182
  • [6] Gas and soot formed in the dimethoxymethane pyrolysis. Soot characterization
    Alexandrino, Katiuska
    Millera, Angela
    Bilbao, Rafael
    Alzueta, Maria U.
    FUEL PROCESSING TECHNOLOGY, 2018, 179 : 369 - 377
  • [7] Investigating the formation of soot in CH4 pyrolysis reactor: A numerical, experimental, and characterization study
    Shirsath, Akash Bhimrao
    Mokashi, Manas
    Pashminehazar, Reihaneh
    Celik, Ahmet
    Lott, Patrick
    Tischer, Steffen
    Grunwaldt, Jan-Dierk
    Deutschmann, Olaf
    CARBON, 2025, 231
  • [8] Soot formation in isothermal pyrolysis of carbon tetrachloride and its mixture with methane
    S. V. Shurupov
    P. A. Tesner
    Combustion, Explosion and Shock Waves, 1999, 35 : 386 - 392
  • [9] Characterization and reactivity of soot from biomass pyrolysis in a fixed bed reactor
    Li, Yan
    Cao, Jinhui
    Liu, Yuanyi
    Tan, Houzhang
    Huagong Xuebao/CIESC Journal, 2022, 73 (12): : 5564 - 5571
  • [10] On the mechanism of soot particle formation
    A. V. Krestinin
    M. B. Kislov
    A. V. Raevskii
    O. I. Kolesova
    L. N. Stesik
    Kinetics and Catalysis, 2000, 41 : 90 - 98