On the Parshin-Arakelov theorem and integral sections on elliptic surfaces

被引:1
|
作者
Xuan Kien Phung [1 ]
机构
[1] Univ Montreal, Dept Informat & Rech Operat, Montreal, PQ H3T 1J4, Canada
来源
BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY | 2023年 / 64卷 / 02期
关键词
Function field; Curve; Integral point; Parshin-Arakelov's theorem; Elliptic surface; Moduli space of curves; CURVES; UNIFORMITY; POINTS; BOUNDS;
D O I
10.1007/s13366-022-00639-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is well-known that the Parshin-Arakelov theorem implies the Mordell conjecture over complex function fields by a covering construction of Parshin. Via a similar map in the context of integral points on elliptic curves over function fields, we explain how to obtain a short geometric proof of a uniform version of Siegel's theorem. Our technique also allows us to establish a uniform quantitative result on the set-theoretic intersection of curves with the singular divisor in the compact moduli space of stable curves.
引用
收藏
页码:387 / 401
页数:15
相关论文
共 41 条