High-Resolution Feature Pyramid Network for Small Object Detection on Drone View

被引:6
|
作者
Chen, Zhaodong [1 ,2 ]
Ji, Hongbing [1 ,2 ]
Zhang, Yongquan [1 ,2 ]
Zhu, Zhigang [1 ,2 ]
Li, Yifan [1 ,2 ]
机构
[1] Xidian Univ, Xian Key Lab Intelligent Spectrum Sensing & Inform, Xian 710071, Peoples R China
[2] Xidian Univ, Shaanxi Union Res Ctr Univ & Enterprise Intelligen, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
Object detection on drone view; small object detector; high-resolution feature; multiple-in-single-out feature pyramid network; CONTEXT;
D O I
10.1109/TCSVT.2023.3286896
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Object detection has developed rapidly with the help of deep learning technologies recent years. However, object detection on drone view remains challenging due to two main reasons: (1) It is difficult to detect small-scale objects lacking detailed information. (2) The diversity of camera angles of drones brings dramatic differences in object scale. Although feature pyramid network (FPN) alleviates the problem caused by scale difference to some extent, it also retains some worthless features, which wastes resources and slows down the speed. In this work, we propose a novel High-Resolution Feature Pyramid Network (HR-FPN) to improve the detection accuracy of small-scale objects and avoid feature redundancy. The key components of HR-FPN include a high-resolution feature alignment module (HRFA), a high-resolution feature fusion module (HRFF) and a multi-scale decoupled head (MSDH). HRFA feeds multi-scale features from backbone into parallel resampling channels to obtain high-resolution features at the same scale. HRFF establishes a bottom-up path to distribute context-rich low-level semantic information to all layers that are then aggregated into classification feature and localization feature. MSDH cope with the scale difference of objects by predicting the categories and locations corresponding to different scales of objects separately. Moreover, we train model by scale-weighted loss to focus more on small-scale objects. Extensive experiments and comprehensive evaluations demonstrate the effectiveness and advancement of our approach.
引用
收藏
页码:475 / 489
页数:15
相关论文
共 50 条
  • [1] High-Resolution Feature Pyramid Network for Automatic Crater Detection on Mars
    Yang, Shuojin
    Cai, Zhanchuan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [2] Attentional feature pyramid network for small object detection
    Min, Kyungseo
    Lee, Gun-Hee
    Lee, Seong-Whan
    NEURAL NETWORKS, 2022, 155 : 439 - 450
  • [3] Extended Feature Pyramid Network for Small Object Detection
    Deng, Chunfang
    Wang, Mengmeng
    Liu, Liang
    Liu, Yong
    Jiang, Yunliang
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 1968 - 1979
  • [4] Hierarchical Focused Feature Pyramid Network for Small Object Detection
    Wang, Siwei
    Chen, Zhiwei
    Ding, Haoyang
    Cao, Liujuan
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT XII, 2024, 14436 : 432 - 444
  • [5] SSRDet: Small Object Detection Based on Feature Pyramid Network
    Zhang, Lijuan
    Wang, Minhui
    Jiang, Yutong
    Li, Dongming
    Zhou, Yue
    IEEE ACCESS, 2023, 11 : 96743 - 96752
  • [6] Enhanced semantic feature pyramid network for small object detection
    Chen, Yuqi
    Zhu, Xiangbin
    Li, Yonggang
    Wei, Yuanwang
    Ye, Lihua
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2023, 113
  • [7] ALFPN: Adaptive Learning Feature Pyramid Network for Small Object Detection
    Chen, Haolin
    Wang, Qi
    Ruan, Weijian
    Zhu, Jingxiang
    Lei, Liang
    Wu, Xue
    Hao, Gefei
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2023, 2023
  • [8] Hybrid receptive field network for small object detection on drone view
    ZHANG, Yongquan (zhangyq@xidian.edu.cn), 1600, Elsevier B.V. (38):
  • [9] Object Detection in Very High-Resolution Aerial Images Using One-Stage Densely Connected Feature Pyramid Network
    Tayara, Hilal
    Chong, Kil To
    SENSORS, 2018, 18 (10)
  • [10] An improved feature pyramid network for object detection
    Zhu, Linxiang
    Lee, Feifei
    Cai, Jiawei
    Yu, Hongliu
    Chen, Qiu
    NEUROCOMPUTING, 2022, 483 : 127 - 139