Lower Diffusion-Induced Stress in Nano-Crystallites of P2-Na2/3Ni1/3Mn1/2Ti1/6O2 Novel Cathode for High Energy Na-ion Batteries

被引:15
|
作者
Sengupta, Abhinanda [1 ]
Kumar, Ajit [1 ]
Barik, Gayatree [1 ]
Ahuja, Aakash [1 ]
Ghosh, Jit [1 ]
Lohani, Harshita [1 ]
Kumari, Pratima [1 ]
Bhandakkar, Tanmay K. [2 ]
Mitra, Sagar [1 ]
机构
[1] Indian Inst Technol, Dept Energy Sci & Engn, Electrochem Energy Storage Lab, Mumbai 400076, India
[2] Indian Inst Technol, Dept Mech Engn, Mumbai 400076, India
关键词
diffusion-induced stress; faster Na-ion kinetics; faster solid-state synthesis; nano-crystallites; P2-type Na2 3Ni1 3Mn1 2Ti1 6O2 (NMTNOnano); porous secondary particles; TRANSITION-METAL OXIDES; ENHANCED PERFORMANCE; INTERCALATION; CAPACITY; INSIGHTS; PHASE; ELECTRODES; NI; P2;
D O I
10.1002/smll.202206248
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
P2-type Na2/3Ni1/3Mn1/2Ti1/6O2 (NMTNO) cathode is a preeminent electrode material for Na-ion batteries owing to its open prismatic framework, air-moisture stability, inexpensiveness, appealing capacity, environmental benignity, and Co-free composition. However, the poor cycling stability, sluggish Na-ion kinetics induced in bulk-sized cathode particles, cracking, and exfoliation in the crystallites remain a setback. To outmaneuver these, a designing strategy of a mechanically robust, hexagonal nano-crystallites of P2-type Na2/3Ni1/3Mn1/2Ti1/6O2 (NMTNOnano) electrode via quick, energy-efficient, and low-cost microwave-irradiated synthesis is proposed. For the first time, employing a unified experimental and theoretical approach with fracture mechanics analysis, the mechanism behind the enhanced performance, better structural stability, and lower diffusion-induced stress of NMTNOnano compared to micro-sized Na2/3Ni1/3Mn1/2Ti1/6O2 is unveiled and the electrochemical shock map is predicted. The NMTNOnano cathode provides 94.8% capacity retention after 100 cycles at 0.1 C with prolonged performance for 1000 cycles at 0.5 C. The practical viability of this cathode, tested in a full cell against a hard carbon anode delivered 85.48% capacity retention at 0.14 mA cm(-2) after 200 cycles. This work bridges the gap in correlating the microstructural and electrochemical properties through experimental, theoretical (DFT), and fracture mechanics analysis, thereby tailoring efficient cathode with lower diffusion-induced stress for high-energy Na-ion batteries.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] An overview of the modification strategies for P2-Na2/3Ni1/3Mn2/3O2 cathode for sodium ion batteries
    Wei, Xiang
    Wu, Wei
    Liu, Haoran
    Liu, Chuncheng
    Yang, Deqiang
    Lv, Yaohui
    Zhu, Ting
    Zhang, Wei
    SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2024, 41
  • [2] Synthesis of metal ion substituted P2-Na2/3Ni1/3Mn2/3O2 cathode material with enhanced performance for Na ion batteries
    Zhao, Wenwen
    Kirie, Hideyuki
    Tanaka, Akinobu
    Unno, Masashi
    Yamamoto, Shinji
    Noguchi, Hideyuki
    MATERIALS LETTERS, 2014, 135 : 131 - 134
  • [3] P2-Na2/3 Ni2/3Te1/3O2 Cathode for Na-ion Batteries with High Voltage and Excellent Stability
    Wang, Wenhui
    Zhang, Jiaolong
    Li, Chaolin
    Kou, Xiaohang
    Li, Baohua
    Yu, Denis Y. W.
    ENERGY & ENVIRONMENTAL MATERIALS, 2023, 6 (02)
  • [4] Research progress of layered P2-Na2/3Ni1/3Mn2/3O2 cathode material for sodium ion batteries
    Chang, Longjiao
    Yang, Ruifen
    Bi, Xiaolong
    Yang, Wei
    Cai, Kedi
    Wei, Anlu
    Liu, Jianan
    JOURNAL OF ENERGY STORAGE, 2023, 73
  • [5] Structure, Electrochemical, and Transport Properties of Li- and F-Modified P2-Na2/3Ni1/3Mn2/3O2 Cathode Materials for Na-Ion Batteries
    Chen, Xinglong
    Guo, Wenyue
    Li, Rui
    Du, Peng
    Zhan, Xiaowen
    Gao, Shan
    COATINGS, 2023, 13 (03)
  • [6] Investigation of P2-Na2/3Mn1/3Fe1/3Co1/3O2 for Na-Ion Battery Positive Electrodes
    Thorne, J. S.
    Dunlap, R. A.
    Obrovac, M. N.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (14) : A2232 - A2236
  • [7] Synthesis and properties of P2-Na2/3Mn1/3Bi1/3Ni1/3O2 as long-life and high voltage sodium-ion battery cathode
    Ma Teng-Yue
    An Jin-Ling
    Zhang Peng
    Liu Jin-Rong
    He Wei-Yan
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2023, 39 (06) : 1023 - 1030
  • [8] Enhanced electrochemical performance of Ti substituted P2-Na2/3Ni1/4Mn3/4O2 cathode material for sodium ion batteries
    Zhao, Wenwen
    Tanaka, Akinobu
    Momosaki, Kyoko
    Yamamoto, Shinji
    Zhang, Fabi
    Guo, Qixin
    Noguchi, Hideyuki
    ELECTROCHIMICA ACTA, 2015, 170 : 171 - 181
  • [9] Comprehensive Review of P2-Type Na2/3Ni1/3Mn2/3O2, a Potential Cathode for Practical Application of Na-Ion Batteries
    Zhang, Jiaolong
    Wang, Wenhui
    Wang, Wei
    Wang, Shuwei
    Li, Baohua
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (25) : 22051 - 22066
  • [10] Synthesis and electrochemical properties of P2-Na2/3Ni1/3Mn2/3O2
    Guoqiang Liu
    Lei Wen
    Yue Li
    Yulong Kou
    Ionics, 2015, 21 : 1011 - 1016