Systematic review identifies the design and methodological conduct of studies on machine learning-based prediction models

被引:39
|
作者
Navarro, Constanza L. Andaur [1 ,2 ,6 ]
Damen, Johanna A. A. [1 ,2 ]
van Smeden, Maarten [1 ]
Takada, Toshihiko [1 ]
Nijman, Steven W. J. [1 ]
Dhiman, Paula [3 ,4 ]
Ma, Jie [3 ]
Collins, Gary S. [3 ,4 ]
Bajpai, Ram [5 ]
Riley, Richard D. [5 ]
Moons, Karel G. M. [1 ,2 ]
Hooft, Lotty [1 ,2 ]
机构
[1] Univ Utrecht, Univ Med Ctr Utrecht, Julius Ctr Hlth Sci & Primary Care, Utrecht, Netherlands
[2] Univ Utrecht, Univ Med Ctr Utrecht, Cochrane Netherlands, Utrecht, Netherlands
[3] Univ Oxford, Ctr Stat Med, Nuffield Dept Orthopaed Rheumatol & Musculoskeleta, Oxford, England
[4] Oxford Univ Hosp NHS Fdn Trust, NIHR Oxford Biomed Res Ctr, Oxford, England
[5] Keele Univ, Ctr Prognosis Res, Sch Med, Keele, England
[6] Julius Ctr Hlth Sci & Primary Care, Univ Weg 100,POB 8550, NL-3508 GA Utrecht, Netherlands
基金
澳大利亚研究理事会;
关键词
Predictive algorithm; Risk prediction; Diagnosis; Prognosis; Development; Validation; RISK; APPLICABILITY; EXPLANATION; VALIDATION; DIAGNOSIS; PROBAST; BIAS; TOOL;
D O I
10.1016/j.jclinepi.2022.11.015
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Background and Objectives: We sought to summarize the study design, modelling strategies, and performance measures reported in studies on clinical prediction models developed using machine learning techniques.Methods: We search PubMed for articles published between 01/01/2018 and 31/12/2019, describing the development or the development with external validation of a multivariable prediction model using any supervised machine learning technique. No restrictions were made based on study design, data source, or predicted patient-related health outcomes.Results: We included 152 studies, 58 (38.2% [95% CI 30.8-46.1]) were diagnostic and 94 (61.8% [95% CI 53.9-69.2]) prognostic studies. Most studies reported only the development of prediction models (n = 133, 87.5% [95% CI 81.3-91.8]), focused on binary outcomes (n = 131, 86.2% [95% CI 79.8-90.8), and did not report a sample size calculation (n = 125, 82.2% [95% CI 75.4-87.5]). The most common algorithms used were support vector machine (n = 86/522, 16.5% [95% CI 13.5-19.9]) and random forest (n = 73/522, 14% [95% CI 11.3-17.2]). Values for area under the Receiver Operating Characteristic curve ranged from 0.45 to 1.00. Calibration metrics were often missed (n 5 494/522, 94.6% [95% CI 92.4-96.3]).Conclusion: Our review revealed that focus is required on handling of missing values, methods for internal validation, and reporting of calibration to improve the methodological conduct of studies on machine learning-based prediction models.Systematic review registration: PROSPERO, CRD42019161764. (c) 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:8 / 22
页数:15
相关论文
共 50 条
  • [1] Methodological conduct of prognostic prediction models developed using machine learning in oncology: a systematic review
    Dhiman, Paula
    Ma, Jie
    Navarro, Constanza L. Andaur
    Speich, Benjamin
    Bullock, Garrett
    Damen, Johanna A. A.
    Hooft, Lotty
    Kirtley, Shona
    Riley, Richard D.
    Van Calster, Ben
    Moons, Karel G. M.
    Collins, Gary S.
    BMC MEDICAL RESEARCH METHODOLOGY, 2022, 22 (01)
  • [2] Methodological conduct of prognostic prediction models developed using machine learning in oncology: a systematic review
    Paula Dhiman
    Jie Ma
    Constanza L. Andaur Navarro
    Benjamin Speich
    Garrett Bullock
    Johanna A. A. Damen
    Lotty Hooft
    Shona Kirtley
    Richard D. Riley
    Ben Van Calster
    Karel G. M. Moons
    Gary S. Collins
    BMC Medical Research Methodology, 22
  • [3] Machine Learning-Based Prediction Models for Clostridioides difficile Infection: A Systematic Review
    Tariq, Raseen
    Malik, Sheza
    Redij, Renisha
    Arunachalam, Shivaram
    Faubion, Jr William A.
    Khanna, Sahil
    CLINICAL AND TRANSLATIONAL GASTROENTEROLOGY, 2024, 15 (06)
  • [4] MACHINE LEARNING-BASED PREDICTION MODELS FOR C DIFFICILE INFECTION: A SYSTEMATIC REVIEW
    Tariq, Raseen
    Redij, Renisha
    Arunachalam, Shivaram Poigai
    Faubion, William
    Khanna, Sahil
    GASTROENTEROLOGY, 2023, 164 (06) : S1176 - S1176
  • [5] Systematic review finds "spin"practices and poor reporting standards in studies on machine learning-based prediction models
    Navarro, Constanza L. Andaur
    Damen, Johanna A. A.
    Takada, Toshihiko
    Nijman, Steven W. J.
    Dhiman, Paula
    Ma, Jie
    Collins, Gary S.
    Bajpai, Ram
    Riley, Richard D.
    Moons, Karel G. M.
    Hooft, Lotty
    JOURNAL OF CLINICAL EPIDEMIOLOGY, 2023, 158 : 99 - 110
  • [6] Machine Learning-Based Prediction Models for Delirium: A Systematic Review and Meta-Analysis
    Xie, Qi
    Wang, Xinglei
    Pei, Juhong
    Wu, Yinping
    Guo, Qiang
    Su, Yujie
    Yan, Hui
    Nan, Ruiling
    Chen, Haixia
    Dou, Xinman
    JOURNAL OF THE AMERICAN MEDICAL DIRECTORS ASSOCIATION, 2022, 23 (10) : 1655 - +
  • [7] Evaluation of machine learning-based models for prediction of clinical deterioration: A systematic literature review
    Jahandideh, Sepideh
    Ozavci, Guncag
    Sahle, Berhe W.
    Kouzani, Abbas Z.
    Magrabi, Farah
    Bucknall, Tracey
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2023, 175
  • [8] Machine learning-based prediction models for pressure injury: A systematic review and meta-analysis
    Pei, Juhong
    Guo, Xiaojing
    Tao, Hongxia
    Wei, Yuting
    Zhang, Hongyan
    Ma, Yuxia
    Han, Lin
    INTERNATIONAL WOUND JOURNAL, 2023, 20 (10) : 4328 - 4339
  • [9] Machine Learning-based Prediction Models for Diagnosis and Prognosis in Inflammatory Bowel Diseases: A Systematic Review
    Nguyen, Nghia H.
    Picetti, Dominic
    Dulai, Parambir S.
    Jairath, Vipul
    Sandborn, William J.
    Ohno-Machado, Lucila
    Chen, Peter L.
    Singh, Siddharth
    JOURNAL OF CROHNS & COLITIS, 2022, 16 (03): : 398 - 413
  • [10] Machine learning-based models for prediction of survival in medulloblastoma: a systematic review and meta-analysis
    Hajikarimloo, Bardia
    Habibi, Mohammad Amin
    Alvani, Mohammadamin Sabbagh
    Meinagh, Sima Osouli
    Kooshki, Alireza
    Afkhami-Ardakani, Omid
    Rasouli, Fatemeh
    Tos, Salem M.
    Tavanaei, Roozbeh
    Akhlaghpasand, Mohammadhosein
    Hashemi, Rana
    Hasanzade, Arman
    NEUROLOGICAL SCIENCES, 2025, 46 (02) : 689 - 696