Co-combustion performance of oil palm biomass with coal: thermodynamics and kinetics analyses

被引:4
|
作者
Prayoga, Moch Zulfikar Eka [1 ,3 ]
Putra, Hanafi Prida [1 ,3 ]
Adelia, Nesha [1 ]
Luktyansyah, Insyiah Meida [2 ]
Ifanda, Ifanda [1 ]
Prismantoko, Adi [1 ]
Darmawan, Arif [1 ]
Hartono, Juli [4 ]
Wirawan, Soni Solistia [1 ]
Aziz, Muhammad [5 ]
Prabowo, Prabowo [3 ]
Hariana, Hariana [1 ,3 ]
机构
[1] Natl Res & Innovat Agcy, Res Ctr Energy Convers & Conservat, South Tangerang 15314, Indonesia
[2] Pupuk Kaltim, South Borneo 75124, Indonesia
[3] Sepuluh Nopember Inst Technol, Dept Mech Engn, Surabaya 60111, Indonesia
[4] Berkah Rekayasa Inovasi, Bogor 16340, Indonesia
[5] Univ Tokyo, Inst Ind Sci, Tokyo 1538505, Japan
关键词
Thermal analysis; Mass decomposition; Energy transition; Thermogravimetric evaluation; Combustion efficiency; HIGH ASH COAL; THERMOGRAVIMETRIC ANALYSIS; COMBUSTION CHARACTERISTICS; THERMAL-DECOMPOSITION; BLENDS; PYROLYSIS; DEPOSITION; FUEL;
D O I
10.1007/s10973-023-12865-z
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper comprehensively assesses oil palm biomass and coal blends, focusing on evaluating thermodynamic and kinetics parameters. The experimental approach employs thermogravimetric differential thermal analysis (TG-DTA) with varying heating rates of 5, 10, 15, and 20 K min-1. Laboratory tests are conducted on six blended samples of different coal and oil palm biomass ratios. The evaluation encompasses key combustion parameters, including ignition index (Di), burnout index (Db), combustion performance index (S), reactivity (R), flammability index (C), and index of intensity (Hf). Additionally, thermodynamic parameters such as a change in enthalpy (Delta H), change in Gibbs free energy (Delta G), and change in entropy (Delta S) are analyzed. The results demonstrate that the optimal co-combustion material is a blend of 76% low-rank coal, 19% medium-rank coal, and 5% oil palm fronds, identified as L80M20F. This blend exhibits superior combustion performance, as evidenced by the highest values for Di (31.17 x 10-8% min-3), Db (28.91 x 10-11% min-3 K-1), and R (39.18 x 104 mg min-1). Furthermore, it displays the lowest Delta H of 73.11 kJ mol-1 and Delta S of - 0.0452844 J mol-1 K-1, along with the highest Delta G of 179.77 kJ mol-1. The accuracy of these findings is confirmed through verification with the Gram-Charlier peak function, which yields a negligible margin of error. In conclusion, this study provides crucial insights for decision-makers by assessing combustion and thermodynamic parameters of oil palm biomass and coal blends. The L80M20F, identified as the optimum blended fuel, showcases its potential to enhance combustion efficiency and contribute to the energy transition toward net-zero emissions.
引用
收藏
页码:2873 / 2891
页数:19
相关论文
共 50 条
  • [1] Co-combustion performance of oil palm biomass with coal: thermodynamics and kinetics analyses
    Moch Zulfikar Eka Prayoga
    Hanafi Prida Putra
    Nesha Adelia
    Insyiah Meida Luktyansyah
    Ifanda Ifanda
    Adi Prismantoko
    Arif Darmawan
    Juli Hartono
    Soni Solistia Wirawan
    Muhammad Aziz
    Prabowo Prabowo
    Hariana Hariana
    Journal of Thermal Analysis and Calorimetry, 2024, 149 : 2873 - 2891
  • [2] Thermodynamics and synergistic effects on the co-combustion of coal and biomass blends
    Si, Fangyuan
    Zhang, Hongming
    Feng, Xiangrui
    Xu, Yulong
    Zhang, Lanjun
    Zhao, Lanming
    Li, Linglong
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2024, 149 (14) : 7749 - 7761
  • [3] Charge performance for co-combustion ash of biomass and coal
    Lü, Jian-Yi
    Deng, Xiao-Chuan
    Lu, Yi-Hai
    Fu, Li-Li
    Hu, Zhi-Guang
    Xu, Bing-Yi
    Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 2016, 44 (04): : 401 - 407
  • [4] Thermal behaviour and kinetics of coal/biomass blends during co-combustion
    Gil, M. V.
    Casal, D.
    Pevida, C.
    Pis, J. J.
    Rubiera, F.
    BIORESOURCE TECHNOLOGY, 2010, 101 (14) : 5601 - 5608
  • [5] Co-combustion of oil sludge char and brown coal: characteristics and kinetics
    Wen H.
    Zhang Y.
    Ji D.
    Zhang G.
    Huagong Xuebao/CIESC Journal, 2020, 71 (02): : 755 - 765
  • [6] Co-combustion of coal and biomass in the fluidized bed
    Department of Boilers and Thermodynamics, Technical University of Czȩstochowa, Armii Krajowej 19c, 42-200 Czȩstochowa, Poland
    Arch. Thermodyn., 2007, 4 (63-78): : 63 - 78
  • [7] Coal-biomass co-combustion: An overview
    Sahu, S. G.
    Chakraborty, N.
    Sarkar, P.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2014, 39 : 575 - 586
  • [8] Characterisation and preparation of biomass for co-combustion with coal
    Siegle, V
    Spliethoff, H
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1998, 215 : U605 - U605
  • [9] Experimental research on co-combustion of biomass and coal
    Liu, Hao
    Qiu, Jian-Rong
    Dong, Xue-Wen
    Li, Jun
    Ranshao Kexue Yu Jishu/Journal of Combustion Science and Technology, 2002, 8 (04): : 319 - 322
  • [10] Influence of co-combustion of coal/biomass on the corrosion
    Pisa, Ionel
    Lazaroiu, Gheorghe
    FUEL PROCESSING TECHNOLOGY, 2012, 104 : 356 - 364