Geometric aspects on Humbert-Edge curves of type 5, Kummer surfaces and hyperelliptic curves of genus 2

被引:1
|
作者
Castorena, Abel [1 ]
Frias-Medina, Juan Bosco [1 ,2 ]
机构
[1] Univ Nacl Autonoma Mexico, Ctr Ciencias Matemat, Campus Morelia Antigua,Carretera Patzcuaro 8701, Morelia 58089, Michoacan, Mexico
[2] Univ Michoacana, Inst Fis & Matemat, Edificio C 3,Ciudad Univ,Ave Francisco J Mugica S-, Morelia 58040, Michoacan, Mexico
关键词
Intersection of quadrics; Curves with automorphisms; Moduli spaces;
D O I
10.1017/S0017089523000174
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we study the Humbert-Edge curves of type 5, defined as a complete intersection of four diagonal quadrics in P-5. We characterize them using Kummer surfaces, and using the geometry of these surfaces, we construct some vanishing thetanulls on such curves. In addition, we describe an argument to give an isomorphism between the moduli space of Humbert-Edge curves of type 5 and the moduli space of hyperelliptic curves of genus 2, and we show how this argument can be generalized to state an isomorphism between the moduli space of hyperelliptic curves of genus g = (n-1)/( 2 )and the moduli space of Humbert-Edge curves of type n = 5 where n is an odd number.
引用
下载
收藏
页码:612 / 624
页数:13
相关论文
共 50 条