Modification of some scalarization approaches for multiobjective optimization

被引:0
|
作者
Khorasani, Vahid Amiri [1 ]
Khorram, Esmaile [1 ]
机构
[1] Amirkabir Univ Technol, Fac Math & Comp Sci, Dept Appl Math, 424 Hafez Ave, Tehran 15914, Iran
关键词
Multiobjective optimization; proper efficient solutions; the feasible-value constraint approach; the weighted-constraint approach; rocket injector design; PROPER EFFICIENCY; VECTOR OPTIMIZATION; DEFINITION; RESPECT; SURFACE; POINTS; FRONT;
D O I
10.1051/ro/2023040
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we propose revisions of two existing scalarization approaches, namely the feasible-value constraint and the weighted constraint. These methods do not easily provide results on proper efficient solutions of a general multiobjective optimization problem. By proposing some novel modifications for these methods, we derive some interesting results concerning proper efficient solutions. These scalarization approaches need no convexity assumption of the objective functions. We also demonstrate the efficiency of the proposed method using numerical experiments. In particular, a rocket injector design problem involving four objective functions illustrates the performance of the proposed method.
引用
收藏
页码:1027 / 1044
页数:18
相关论文
共 50 条
  • [1] Comparison of Some Scalarization Methods in Multiobjective Optimization: Comparison of Scalarization Methods
    Kasimbeyli, Refail
    Ozturk, Zehra Kamisli
    Kasimbeyli, Nergiz
    Yalcin, Gulcin Dinc
    Erdem, Banu Icmen
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (05) : 1875 - 1905
  • [2] Quadratic scalarization for decomposed multiobjective optimization
    Brian Dandurand
    Margaret M. Wiecek
    OR Spectrum, 2016, 38 : 1071 - 1096
  • [3] On Benson's scalarization in multiobjective optimization
    Soleimani-damaneh, Majid
    Zamani, Moslem
    OPTIMIZATION LETTERS, 2016, 10 (08) : 1757 - 1762
  • [4] Scalarization of Multiobjective Robust Optimization Problems
    Khoshkhabar-amiranloo S.
    Operations Research Forum, 2 (3)
  • [5] Quadratic scalarization for decomposed multiobjective optimization
    Dandurand, Brian
    Wiecek, Margaret M.
    OR SPECTRUM, 2016, 38 (04) : 1071 - 1096
  • [6] AN ADAPTIVE SCALARIZATION METHOD IN MULTIOBJECTIVE OPTIMIZATION
    Eichfelder, Gabriele
    SIAM JOURNAL ON OPTIMIZATION, 2009, 19 (04) : 1694 - 1718
  • [7] On Benson’s scalarization in multiobjective optimization
    Majid Soleimani-damaneh
    Moslem Zamani
    Optimization Letters, 2016, 10 : 1757 - 1762
  • [8] Comparison of Some Scalarization Methods in Multiobjective OptimizationComparison of Scalarization Methods
    Refail Kasimbeyli
    Zehra Kamisli Ozturk
    Nergiz Kasimbeyli
    Gulcin Dinc Yalcin
    Banu Icmen Erdem
    Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42 : 1875 - 1905
  • [9] Conic Scalarization Method in Multiobjective Optimization and Relations with Other Scalarization Methods
    Kasimbeyli, Refail
    Ozturk, Zehra Kamisli
    Kasimbeyli, Nergiz
    Yalcin, Gulcin Dinc
    Icmen, Banu
    MODELLING, COMPUTATION AND OPTIMIZATION IN INFORMATION SYSTEMS AND MANAGEMENT SCIENCES - MCO 2015, PT 1, 2015, 359 : 319 - 329
  • [10] Slack-based generalized Tchebycheff norm scalarization approaches for solving multiobjective optimization problems
    N. Hoseinpoor
    M. Ghaznavi
    Journal of Applied Mathematics and Computing, 2023, 69 : 3151 - 3169