Intelligent feedrate optimization using a physics-based and data-driven digital twin

被引:5
|
作者
Kim, Heejin [1 ]
Okwudire, Chinedum E. [1 ]
机构
[1] Univ Michigan, Smart & Sustainable Automat Res Lab, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Computer numerical control (CNC); Digital twin; Feedrate optimization; PRE-COMPENSATION; ERRORS; CONSTRAINTS; MODEL;
D O I
10.1016/j.cirp.2023.04.063
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Intelligent manufacturing machines envisioned for the future must be able to autonomously select process parameters that maximize their speed while adhering to quality specifications. Accordingly, this paper pro-poses a framework and methodology for using a physics-based and data-driven digital twin of a feed drive to maximize feedrate while respecting kinematic and contour error limits. To correct for inaccuracies intro-duced by unmodeled dynamics and disturbances, the data-driven model is updated on-the -fly using sensor feedback. Experiments on a 3-axis CNC machine tool prototype are used to demonstrate up to 35% cycle time reduction without violating error tolerances compared to the status quo.& COPY; 2023 CIRP. Published by Elsevier Ltd. All rights reserved.
引用
下载
收藏
页码:325 / 328
页数:4
相关论文
共 50 条
  • [1] Physics-based Or Data-driven Models?
    Mason, Richard
    Hart's E and P, 2019, (April):
  • [2] Dual Timescales Voltages Regulation in Distribution Systems Using Data-driven and Physics-based Optimization
    Zhang, Jian
    Cui, Mingjian
    He, Yigang
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (02) : 1259 - 1271
  • [3] Hybrid physics-based and data-driven modeling for bioprocess online simulation and optimization
    Zhang, Dongda
    Del Rio-Chanona, Ehecatl Antonio
    Petsagkourakis, Panagiotis
    Wagner, Jonathan
    BIOTECHNOLOGY AND BIOENGINEERING, 2019, 116 (11) : 2919 - 2930
  • [4] Physics-Based and Data-Driven Polymer Rheology Model
    Abdullah, M. B.
    Delshad, M.
    Sepehrnoori, K.
    Balhoff, M. T.
    Foster, J. T.
    Al-Murayri, M. T.
    SPE JOURNAL, 2023, 28 (04): : 1857 - 1879
  • [5] Physics-based and data-driven modeling for biomanufacturing 4.0
    Ogunsanya, Michael
    Desai, Salil
    MANUFACTURING LETTERS, 2023, 36 : 91 - 95
  • [6] Data-driven physics-based modeling of pedestrian dynamics
    Pouw, Caspar A. S.
    Van Der Vleuten, Geert G. M.
    Corbetta, Alessandro
    Toschi, Federico
    Physical Review E, 2024, 110 (06)
  • [7] Physics-Based Data-Driven Buffet-Onset Constraint for Aerodynamic Shape Optimization
    Li, Jichao
    He, Sicheng
    Zhang, Mengqi
    Martins, Joaquim R. R. A.
    Khoo, Boo Cheong
    AIAA JOURNAL, 2022, 60 (08) : 4775 - 4788
  • [8] Combining physics-based and data-driven methods in metal stamping
    Abanda, Amaia
    Arroyo, Amaia
    Boto, Fernando
    Esteras, Miguel
    JOURNAL OF INTELLIGENT MANUFACTURING, 2024,
  • [9] Autonomous Golf Putting with Data-Driven and Physics-Based Methods
    Junker, Annika
    Fittkau, Niklas
    Timmermann, Julia
    Traechtler, Ansgar
    2022 SIXTH IEEE INTERNATIONAL CONFERENCE ON ROBOTIC COMPUTING, IRC, 2022, : 134 - 141
  • [10] Efficacy and Reliability of Data-Driven and Physics-Based Simulation Models
    Haas, Kyle
    STRUCTURES CONGRESS 2020, 2020, : 720 - 729