A Novel Deep-Learning-Based CADx Architecture for Classification of Thyroid Nodules Using Ultrasound Images

被引:8
|
作者
Goreke, Volkan [1 ]
机构
[1] Sivas Cumhuriyet Univ, Sivas Vocat Sch Tech Sci, Dept Comp Technol, TR-58140 Sivas, Turkiye
关键词
CADx; Thyroid nodules; Deep learning; FINE-NEEDLE-ASPIRATION; TEXTURE; WAVELET; CANCER; ULTRASONOGRAPHY; EXTRACTION; FEATURES;
D O I
10.1007/s12539-023-00560-4
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nodules of thyroid cancer occur in the cells of the thyroid as benign or malign types. Thyroid sonographic images are mostly used for diagnosis of thyroid cancer. The aim of this study is to introduce a computer-aided diagnosis system that can classify the thyroid nodules with high accuracy using the data gathered from ultrasound images. Acquisition and labeling of sub-images were performed by a specialist physician. Then the number of these sub-images were increased using data augmentation methods. Deep features were obtained from the images using a pre-trained deep neural network. The dimensions of the features were reduced and features were improved. The improved features were combined with morphological and texture features. This feature group was rated by a value called similarity coefficient value which was obtained from a similarity coefficient generator module. The nodules were classified as benign or malignant using a multi-layer deep neural network with a pre-weighting layer designed with a novel approach. In this study, a novel multi-layer computer-aided diagnosis system was proposed for thyroid cancer detection. In the first layer of the system, a novel feature extraction method based on the class similarity of images was developed. In the second layer, a novel pre-weighting layer was proposed by modifying the genetic algorithm. The proposed system showed superior performance in different metrics compared to the literature.
引用
收藏
页码:360 / 373
页数:14
相关论文
共 50 条
  • [1] A Novel Deep-Learning-Based CADx Architecture for Classification of Thyroid Nodules Using Ultrasound Images
    Volkan Göreke
    Interdisciplinary Sciences: Computational Life Sciences, 2023, 15 : 360 - 373
  • [2] CLASSIFICATION OF THYROID NODULES IN ULTRASOUND IMAGES USING DEEP MODEL BASED TRANSFER LEARNING AND HYBRID FEATURES
    Liu, Tianjiao
    Xie, Shuaining
    Yu, Jing
    Niu, Lijuan
    Sun, Weidong
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 919 - 923
  • [3] Deep learning on ultrasound images of thyroid nodules
    Sharifi, Yasaman
    Bakhshali, Mohamad Amin
    Dehghani, Toktam
    DanaiAshgzari, Morteza
    Sargolzaei, Mahdi
    Eslami, Saeid
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2021, 41 (02) : 636 - 655
  • [4] Detection of Thyroid Nodules with Ultrasound Images Based on Deep Learning
    Yu, Xia
    Wang, Hongjie
    Ma, Liyong
    CURRENT MEDICAL IMAGING, 2020, 16 (02) : 174 - 180
  • [5] Ultrasound Image Classification of Thyroid Nodules Based on Deep Learning
    Yang, Jingya
    Shi, Xiaoli
    Wang, Bing
    Qiu, Wenjing
    Tian, Geng
    Wang, Xudong
    Wang, Peizhen
    Yang, Jiasheng
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [6] Comparison Study of Radiomics and Deep Learning-Based Methods for Thyroid Nodules Classification Using Ultrasound Images
    Wang, Yongfeng
    Yue, Wenwen
    Li, Xiaolong
    Liu, Shuyu
    Guo, Lehang
    Xu, Huixiong
    Zhang, Heye
    Yang, Guang
    IEEE ACCESS, 2020, 8 (08): : 52010 - 52017
  • [7] Deep learning based classification of ultrasound images for thyroid nodules: a large scale of pilot study
    Guan, Qing
    Wang, Yunjun
    Du, Jiajun
    Qin, Yu
    Lu, Hongtao
    Xiang, Jun
    Wang, Fen
    ANNALS OF TRANSLATIONAL MEDICINE, 2019, 7 (07)
  • [8] Ensemble Deep Learning Model for Multicenter Classification of Thyroid Nodules on Ultrasound Images
    Wei, Xi
    Gao, Ming
    Yu, Ruiguo
    Liu, Zhiqiang
    Gu, Qing
    Liu, Xun
    Zheng, Zhiming
    Zheng, Xiangqian
    Zhu, Jialin
    Zhang, Sheng
    MEDICAL SCIENCE MONITOR, 2020, 26
  • [9] Classification of thyroid nodules using ultrasound images
    Manivannan, T.
    Ayyappan, Nagarajan
    BIOINFORMATION, 2020, 16 (02) : 145 - 148
  • [10] Classification of Thyroid Nodules by Using Deep Learning Radiomics Based on Ultrasound Dynamic Video
    Zhang, Chunquan
    Liu, Dan
    Huang, Long
    Zhao, Yu
    Chen, Lili
    Guo, Youmin
    JOURNAL OF ULTRASOUND IN MEDICINE, 2022, 41 (12) : 2993 - 3002