MORA and EnsembleTFpredictor: An ensemble approach to reveal functional transcription factor regulatory networks

被引:0
|
作者
Boyer, Kevin [1 ,5 ]
Li, Louis [2 ]
Li, Tiandao [3 ]
Zhang, Bo [3 ]
Zhao, Guoyan [1 ,4 ,6 ]
机构
[1] Washington Univ, Dept Neurosci, Sch Med, St Louis, MO 63110 USA
[2] Brown Univ, Providence, RI 02912 USA
[3] Washington Univ, Dept Dev Biol, Sch Med, St Louis, MO 63110 USA
[4] Washington Univ, Sch Med, Dept Pathol & Immunol, St Louis, MO 63110 USA
[5] Washington Univ, Sch Med, Dept Genet, St Louis, MO USA
[6] Washington Univ, Sch Med, Dept Neurol, St Louis, MO USA
来源
PLOS ONE | 2023年 / 18卷 / 11期
基金
美国国家卫生研究院;
关键词
BINDING MICROARRAY DATA; IFN-GAMMA; ONLINE DATABASE; C-JUN; DNA; IDENTIFICATION; STAT1; ACTIVATION; SEQUENCES; PATTERNS;
D O I
10.1371/journal.pone.0294724
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Motivation Our study aimed to identify biologically relevant transcription factors (TFs) that control the expression of a set of co-expressed or co-regulated genes. Results We developed a fully automated pipeline, Motif Over Representation Analysis (MORA), to detect enrichment of known TF binding motifs in any query sequences. MORA performed better than or comparable to five other TF-prediction tools as evaluated using hundreds of differentially expressed gene sets and ChIP-seq datasets derived from known TFs. Additionally, we developed EnsembleTFpredictor to harness the power of multiple TF-prediction tools to provide a list of functional TFs ranked by prediction confidence. When applied to the test datasets, EnsembleTFpredictor not only identified the target TF but also revealed many TFs known to cooperate with the target TF in the corresponding biological systems. MORA and EnsembleTFpredictor have been used in two publications, demonstrating their power in guiding experimental design and in revealing novel biological insights.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Transcription factor functionality and transcription regulatory networks
    Grove, Christian A.
    Walhout, Albertha J. M.
    MOLECULAR BIOSYSTEMS, 2008, 4 (04) : 309 - 314
  • [2] The ensemble approach to understand genetic regulatory networks
    Kauffman, S
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 340 (04) : 733 - 740
  • [3] Gene regulatory networks and transcription factor transcriptomics
    Mueller-Roeber, B.
    Arvidsson, S.
    Balazadeh, S.
    Correa, L. G. G.
    Perez-Rodriguez, P.
    Riano-Pachon, D. M.
    NEW BIOTECHNOLOGY, 2009, 25 : S318 - S318
  • [4] Functional genomics as applied to mapping transcription regulatory networks
    Banerjee, N
    Zhang, MX
    CURRENT OPINION IN MICROBIOLOGY, 2002, 5 (03) : 313 - 317
  • [5] Inferring transcription factor collaborations in gene regulatory networks
    Awad, Sherine
    Chen, Jin
    BMC SYSTEMS BIOLOGY, 2014, 8
  • [6] Asymmetric Evolution of Human Transcription Factor Regulatory Networks
    Zhou, Zhan
    Zhou, Jingqi
    Su, Zhixi
    Gu, Xun
    MOLECULAR BIOLOGY AND EVOLUTION, 2014, 31 (08) : 2149 - 2155
  • [7] Circuitry and Dynamics of Human Transcription Factor Regulatory Networks
    Neph, Shane
    Stergachis, Andrew B.
    Reynolds, Alex
    Sandstrom, Richard
    Borenstein, Elhanan
    Stamatoyannopoulos, John A.
    CELL, 2012, 150 (06) : 1274 - 1286
  • [8] Factor analysis for gene regulatory networks and transcription factor activity profiles
    Iosifina Pournara
    Lorenz Wernisch
    BMC Bioinformatics, 8
  • [9] Factor analysis for gene regulatory networks and transcription factor activity profiles
    Pournara, Iosifina
    Wernisch, Lorenz
    BMC BIOINFORMATICS, 2007, 8 (1)
  • [10] Transcription Factor Co-expression Networks of Adipose RNA-Seq Data Reveal Regulatory Mechanisms of Obesity
    Skinkyte-Juskiene, Ruta
    Kogelman, Lisette J. A.
    Kadarmideen, Haja N.
    CURRENT GENOMICS, 2018, 19 (04) : 289 - 299