Non-autonomous fractional Cauchy problems with almost sectorial operators

被引:0
|
作者
He, Jia Wei [1 ]
Zhou, Yong [2 ,3 ]
机构
[1] Guangxi Univ, Coll Math & Informat Sci, Nanning 530004, Peoples R China
[2] Macau Univ Sci & Technol, Macao Ctr Math Sci, Taipa 999078, Macau, Peoples R China
[3] Xiangtan Univ, Fac Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Fractional Cauchy problems; Non-autonomous evolution equations; Existence; EVOLUTION-EQUATIONS; TIME; REGULARITY; DIFFUSION; EXISTENCE; DYNAMICS;
D O I
10.1016/j.bulsci.2024.103395
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a class of non -autonomous fractional Cauchy problems with the almost sectorial operators. We consider the time fractional derivative in the sense of Caputo type. First, we construct two operator families by means of Mittag-Leffler functions, which will be useful to both determine the structure of solution operator families and prove existence results. Moreover, we establish the existence and uniqueness for classical solutions of linear problem, and the existence of mild solutions for nonlinear problem by proving the compactness of solution operator families. Finally, we provide several examples to illustrate the efficiency of our results. (c) 2024 Elsevier Masson SAS. All rights reserved.
引用
收藏
页数:45
相关论文
共 50 条
  • [1] Fractional Cauchy problems with almost sectorial operators
    Zhang, Lu
    Zhou, Yong
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 : 145 - 157
  • [2] Abstract fractional Cauchy problems with almost sectorial operators
    Wang, Rong-Nian
    Chen, De-Han
    Xiao, Ti-Jun
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (01) : 202 - 235
  • [3] Non-autonomous semilinear evolution equations with almost sectorial operators
    Carvalho, Alexandre N.
    Dlotko, Tomasz
    Nascimento, Marcelo J. D.
    JOURNAL OF EVOLUTION EQUATIONS, 2008, 8 (04) : 631 - 659
  • [4] Non-autonomous semilinear evolution equations with almost sectorial operators
    Alexandre N. Carvalho
    Tomasz Dlotko
    Marcelo J. D. Nascimento
    Journal of Evolution Equations, 2008, 8 : 631 - 659
  • [5] Cauchy problem for impulsive fractional differential equations with almost sectorial operators
    Jaiswal, Anjali
    Tyagi, Jagmohan
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2022, 41 (3-4): : 347 - 370
  • [6] Cauchy problem for fractional non-autonomous evolution equations
    Pengyu Chen
    Xuping Zhang
    Yongxiang Li
    Banach Journal of Mathematical Analysis, 2020, 14 : 559 - 584
  • [7] Cauchy problem for fractional non-autonomous evolution equations
    Chen, Pengyu
    Zhang, Xuping
    Li, Yongxiang
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2020, 14 (02) : 559 - 584
  • [8] Cauchy problem for non-autonomous fractional evolution equations
    Jia Wei He
    Yong Zhou
    Fractional Calculus and Applied Analysis, 2022, 25 : 2241 - 2274
  • [9] Cauchy problem for non-autonomous fractional evolution equations
    He, Jia Wei
    Zhou, Yong
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (06) : 2241 - 2274
  • [10] Nonlocal Cauchy problems for semilinear evolution equations involving almost sectorial operators
    Wang, Rong-Nian
    Li, Zhen-Qi
    Ding, Xiao-Hua
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2008, 39 (04): : 333 - 346