Nuclear Shape-Phase Transition From Spherical U(5) to Deformed γ-Unstable O(6) Dynamical Symmetries of Interacting Boson Model Applied to Ru, Pd, and Xe Isotopic Chains

被引:0
|
作者
Khalaf, A. M. [1 ]
Taha, M. M. [2 ]
El-Sayed, M. A. [2 ]
机构
[1] Al Azhar Univ, Fac Sci, Phys Dept, Cairo, Egypt
[2] Egyptian Atom Energy Author, Nucl Res Ctr, Math & Theoret Phys Dept, Cairo, Egypt
关键词
Nuclear structure; Nuclear shape; Phase transition; Interacting boson model;
D O I
10.1007/s13538-023-01357-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The shape transition from spherical vibrator U(5) to gamma-unstable deformed rotor O(6) in even-even Ru, Pd, and Xe isotopic chains are studied in framework of sd interacting boson model (IBM1) using the coherent state formalism to obtain the potential energy surfaces (PES's). The location of critical points in the transition are identified by analysis the PES's in terms of the deformation parameter beta and by using the catastrophe theory in terms of the two essential parameters ( r(1), r(2)). By using the most general IBM1 Hamiltonian in Casimir form with neglecting the U(5) and SU(3) quadratic Casimir operators and introducing only one control parameter the PES leads to the same energy surface as the Q-consistent IBM Hamiltonian at gamma = 0. For the studied isotopic chains, the chi(2)-test is used to perform the fitting between the experimental and the corresponding calculated IBM for some selected energy levels and electric quadrupole transition probabilities B(E2) values using a simulated search program. A good agreement is produced for both energies and B(E2) transition rates. The present model calculations suggest that Ru-100, Pd-102 and Xe-130 nuclei are good candidates for the E(5) critical point symmetry.
引用
收藏
页数:11
相关论文
共 7 条
  • [1] Nuclear Shape-Phase Transition From Spherical U(5) to Deformed γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma$$\end{document}-Unstable O(6) Dynamical Symmetries of Interacting Boson Model Applied to Ru, Pd, and Xe Isotopic Chains
    A. M. Khalaf
    M. M. Taha
    M. A. El-Sayed
    Brazilian Journal of Physics, 2023, 53 (6)
  • [2] Alternative characterization of the spherical to axially deformed shape-phase transition in the interacting boson model
    Dai, L. R.
    Pan, F.
    Liu, L.
    Wang, L. X.
    Draayer, J. P.
    PHYSICAL REVIEW C, 2012, 86 (03):
  • [3] Rotation driven shape-phase transition of the yrast nuclear states with O(6) symmetry in the interacting boson model
    Mu, LZ
    Liu, YX
    CHINESE PHYSICS LETTERS, 2005, 22 (06) : 1354 - 1357
  • [5] Nuclear shape transition between the limiting symmetries U(5) and SU(3) of interacting boson model applied to double even Hafnium isotopic chain
    Khalaf, A. M.
    Ismail, A. M.
    Zaki, A. A.
    NUCLEAR PHYSICS A, 2020, 996
  • [6] U(5)-SU(3) nuclear shape transition within the interacting boson model applied to dysprosium isotopes
    Kotb M.
    Physics of Particles and Nuclei Letters, 2016, 13 (4) : 451 - 459
  • [7] Shape evolution in 116,118Ru: Triaxiality and transition between the O(6) and U(5) dynamical symmetries
    Soederstoerm, P. -A.
    Lorusso, G.
    Watanabe, H.
    Nishimura, S.
    Doornenbal, P.
    Thiamova, G.
    Browne, F.
    Gey, G.
    Jung, H. S.
    Sumikama, T.
    Taprogge, J.
    Vajta, Zs.
    Wu, J.
    Xu, Z. Y.
    Baba, H.
    Benzoni, G.
    Chae, K. Y.
    Crespi, F. C. L.
    Fukuda, N.
    Gernhaeuser, R.
    Inabe, N.
    Isobe, T.
    Jungclaus, A.
    Kameda, D.
    Kim, G. D.
    Kim, Y. -K.
    Kojouharov, I.
    Kondev, F. G.
    Kubo, T.
    Kurz, N.
    Kwon, Y. K.
    Lane, G. J.
    Li, Z.
    Montaner-Piza, A.
    Moschner, K.
    Naqvi, F.
    Niikura, M.
    Nishibata, H.
    Odahara, A.
    Orlandi, R.
    Patel, Z.
    Podolyak, Zs.
    Sakurai, H.
    Schaffner, H.
    Simpson, G. S.
    Steiger, K.
    Suzuki, H.
    Takeda, H.
    Wendt, A.
    Yagi, A.
    PHYSICAL REVIEW C, 2013, 88 (02):