The infinite dihedral group and K3 surfaces with Picard number 2

被引:0
|
作者
Lee, Kwangwoo [1 ]
机构
[1] Chungnam Natl Univ, Dept Math, 99 Daehang Ro, Daejeon, South Korea
基金
新加坡国家研究基金会;
关键词
K3; surface; automorphism; lattice; Pell's equation;
D O I
10.1142/S0129167X2350074X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The automorphism group of a K3 surface with Picard number two is either the infinite cyclic group or the infinite dihedral group, if it is infinite. In this paper, we determine some conditions for a K3 surface of Picard number two to have the infinite dihedral automorphism group.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] ON K3 SURFACES WITH LARGE PICARD NUMBER
    MORRISON, DR
    [J]. INVENTIONES MATHEMATICAE, 1984, 75 (01) : 105 - 121
  • [2] Cox rings of K3 surfaces with Picard number 2
    Ottem, John Christian
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2013, 217 (04) : 709 - 715
  • [3] On the computation of the Picard group for K3 surfaces
    Elsenhans, Andreas-Stephan
    Jahnel, Joerg
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2011, 151 : 263 - 270
  • [4] On the Picard number of K3 surfaces over number fields
    Charles, Francois
    [J]. ALGEBRA & NUMBER THEORY, 2014, 8 (01) : 1 - 17
  • [5] AUTOMORPHISMS OF K3 SURFACES WITH PICARD NUMBER TWO
    Lee, Kwangwoo
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (06) : 1427 - 1437
  • [6] K3 surfaces with two involutions and low Picard number
    Festi, Dino
    Nijgh, Wim
    Platt, Daniel
    [J]. GEOMETRIAE DEDICATA, 2024, 218 (02)
  • [7] K3 surfaces with two involutions and low Picard number
    Dino Festi
    Wim Nijgh
    Daniel Platt
    [J]. Geometriae Dedicata, 2024, 218
  • [8] Cox rings of K3 surfaces of Picard number three
    Artebani, Michela
    Correa Deisler, Claudia
    Laface, Antonio
    [J]. JOURNAL OF ALGEBRA, 2021, 565 : 598 - 626
  • [9] K3 surfaces with Picard number 2, Salem polynomials and Pell equation
    Hashimoto, Kenji
    Keum, JongHae
    Lee, Kwangwoo
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2020, 224 (01) : 432 - 443
  • [10] Integral Picard group of moduli of polarized K3 surfaces
    Di Lorenzo, Andrea
    Fringuelli, Roberto
    Vistoli, Angelo
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2024, 56 (02) : 833 - 846