Deep Underwater Monocular Depth Estimation with Single-Beam Echosounder

被引:1
|
作者
Liu, Haowen [1 ]
Roznere, Monika [1 ]
Li, Alberto Quattrini [1 ]
机构
[1] Dartmouth Coll, Dept Comp Sci, Hanover, NH 03755 USA
关键词
D O I
10.1109/ICRA48891.2023.10161439
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Underwater depth estimation is essential for safe Autonomous Underwater Vehicles (AUV) navigation. While there has been recent advances in out-of-water monocular depth estimation, it is difficult to apply these methods to the underwater domain due to the lack of well-established datasets with labelled ground truths. In this paper, we propose a novel method for self-supervised underwater monocular depth estimation by leveraging a low-cost single-beam echosounder (SBES). We also present a synthetic dataset for underwater depth estimation to facilitate visual learning research in the underwater domain, available at https://github.com/hdacnw/sbes-depth. We evaluated our method on the proposed dataset with results outperforming previous methods and tested our method in a dataset we collected with an inexpensive AUV. We further investigated the use of SBES as an additional component in our self-supervised method for up-to-scale depth estimation providing insights on next research directions.
引用
收藏
页码:1090 / 1097
页数:8
相关论文
共 50 条
  • [1] Underwater Monocular Image Depth Estimation using Single-beam Echosounder
    Roznere, Monika
    Li, Alberto Quattrini
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 1785 - 1790
  • [2] Modeling and Analysis of Sea-Surface Vehicle System for Underwater Mapping Using Single-Beam Echosounder
    Kartal, Seda Karadeniz
    Hacioglu, Rifat
    Gormus, K. Sedar
    Kutoglu, S. Hakan
    Leblebicioglu, M. Kemal
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2022, 10 (10)
  • [4] NEREON - An Underwater Dataset for Monocular Depth Estimation
    Dionisio, Joao M. M.
    Pereira, Pedro N. A. A. S.
    Leite, Pedro N.
    Neves, Francisco S.
    Tavares, Joao Manuel R. S.
    Pinto, Andry M.
    OCEANS 2023 - LIMERICK, 2023,
  • [5] Model-based sediment classification using single-beam echosounder signals
    Snellen, Mirjam
    Siemes, Kerstin
    Simons, Dick G.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2011, 129 (05): : 2878 - 2888
  • [6] Monocular Camera and Single-Beam Sonar-Based Underwater Collision-Free Navigation with Domain Randomization
    Yang, Pengzhi
    Liu, Haowen
    Roznere, Monika
    Li, Alberto Quattrini
    ROBOTICS RESEARCH, ISRR 2022, 2023, 27 : 85 - 101
  • [7] ROBUST LEARNING FOR DEEP MONOCULAR DEPTH ESTIMATION
    Irie, Go
    Kawanishi, Takahito
    Kashino, Kunio
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 964 - 968
  • [8] Deep learning for monocular depth estimation: A review
    Ming, Yue
    Meng, Xuyang
    Fan, Chunxiao
    Yu, Hui
    NEUROCOMPUTING, 2021, 438 : 14 - 33
  • [9] Acoustic detection of a scallop bed from a single-beam echosounder in the St. Lawrence
    Hutin, E
    Simard, Y
    Archambault, P
    ICES JOURNAL OF MARINE SCIENCE, 2005, 62 (05) : 966 - 983
  • [10] Depth estimation from single monocular images using deep hybrid network
    Aleksei Grigorev
    Feng Jiang
    Seungmin Rho
    Worku J. Sori
    Shaohui Liu
    Sergey Sai
    Multimedia Tools and Applications, 2017, 76 : 18585 - 18604