Classification of Epileptic and Psychogenic Non-Epileptic Seizures Using Electroencephalography and Electrocardiography

被引:2
|
作者
Xiong, Wenjuan [1 ]
Nurse, Ewan S. [2 ,3 ]
Lambert, Elisabeth [4 ,5 ]
Cook, Mark J. [3 ,6 ]
Kameneva, Tatiana [7 ,8 ]
机构
[1] Swinburne Univ Technol, Sch Sci Comp & Engn Technol, Hawthorn, Vic 3122, Australia
[2] Seer Med, Melbourne, Vic 3000, Australia
[3] Univ Melbourne, St Vincents Hosp, Dept Med, Melbourne, Vic 3010, Australia
[4] Swinburne Univ Technol, Sch Hlth Sci, Hawthorn, Vic 3122, Australia
[5] Swinburne Univ Technol, Iverson Hlth Innovat Res Inst, Hawthorn, Vic, Australia
[6] Univ Melbourne, Graeme Clark Inst, Melbourne, Vic 3010, Australia
[7] Swinburne Univ Technol, Iverson Hlth Innovat Res Inst, Sch Sci Comp & Engn Technol, Hawthorn, Vic 3122, Australia
[8] Univ Melbourne, Dept Biomed Engn, Melbourne, Vic 3010, Australia
关键词
Electroencephalography; Electrocardiography; Random forests; Feature extraction; Australia; Support vector machines; Classification algorithms; Classification; epileptic seizures (ES); electroencephalography (EEG); electrocardiography (ECG); machine learning; psychogenic non-epileptic seizures (PNES); HEART-RATE; PATTERN; EVENTS;
D O I
10.1109/TNSRE.2023.3288138
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Patients with psychogenic non-epileptic seizures (PNES) may exhibit similar clinical features to patients with epileptic seizures (ES). Misdiagnosis of PNES and ES can lead to inappropriate treatment and significant morbidity. This study investigates the use of machine learning techniques for classification of PNES and ES based on electroencephalography (EEG) and electrocardiography (ECG) data. Video-EEG-ECG of 150 ES events from 16 patients and 96 PNES from 10 patients were analysed. Four preictal periods (time before event onset) in EEG and ECG data were selected for each PNES and ES event (60-45 min, 45-30 min, 30-15 min, 15-0 min). Time-domain features were extracted from each preictal data segment in 17 EEG channels and 1 ECG channel. The classification performance using k-nearest neighbour, decision tree, random forest, naive Bayes, and support vector machine classifiers were evaluated. The results showed the highest classification accuracy was 87.83% using the random forest on 15-0 min preictal period of EEG and ECG data. The performance was significantly higher using 15-0 min preictal period data than 30-15 min, 45-30 min, and 60-45 min preictal periods (p<0.001). The classification accuracy was improved from 86.37% to 87.83% by combining ECG data with EEG data (p<0.001). The study provided an automated classification algorithm for PNES and ES events using machine learning techniques on preictal EEG and ECG data.
引用
收藏
页码:2831 / 2838
页数:8
相关论文
共 50 条
  • [1] Prevalence of alexithymia in patients with psychogenic non-epileptic seizures and epileptic seizures and predictors in psychogenic non-epileptic seizures
    Myers, Lorna
    Matzner, Barbara
    Lancman, Martin
    Perrine, Kenneth
    Lancman, Marcelo
    [J]. EPILEPSY & BEHAVIOR, 2013, 26 (02) : 153 - 157
  • [2] Psychogenic Non-Epileptic Seizures
    Chen, David K.
    Sharma, Esha
    LaFrance, W. Curt, Jr.
    [J]. CURRENT NEUROLOGY AND NEUROSCIENCE REPORTS, 2017, 17 (09)
  • [3] Non-epileptic psychogenic seizures
    González-Goizueta, E
    Martínez-Pérez, B
    Mauri-Llerda, JA
    [J]. REVISTA DE NEUROLOGIA, 2002, 35 (10) : 954 - 959
  • [4] Psychogenic non-epileptic seizures
    Doss, Robert C.
    LaFrance, W. Curt, Jr.
    [J]. EPILEPTIC DISORDERS, 2016, 18 (04) : 337 - 343
  • [5] Non-epileptic psychogenic seizures
    LaFrance, Jr W. C.
    [J]. EPILEPSIA, 2007, 48 : 36 - 36
  • [6] Psychogenic Non-Epileptic Seizures
    David K. Chen
    Esha Sharma
    W. Curt LaFrance
    [J]. Current Neurology and Neuroscience Reports, 2017, 17
  • [7] Subgroup classification in patients with psychogenic non-epileptic seizures
    Bodde, N. M. G.
    van der Kruijs, S. J. M.
    Ijff, D. M.
    Lazeron, R. H. C.
    Vonck, K. E. J.
    Boon, P. A. J. M.
    Aldenkamp, A. P.
    [J]. EPILEPSY & BEHAVIOR, 2013, 26 (03) : 279 - 289
  • [8] Psychogenic non-epileptic seizures in Iran
    Asadi-Pooya, Ali A.
    Emami, Yasaman
    Emami, Mehrdad
    [J]. SEIZURE-EUROPEAN JOURNAL OF EPILEPSY, 2014, 23 (03): : 175 - 177
  • [9] Contribution of video-electroencephalography in the study of non-epileptic psychogenic seizures
    Ba, Fatoumata
    Mbengue, Arame
    [J]. ACTA PHYSIOLOGICA, 2016, 217 : 102 - 102
  • [10] Difficulties in using a classification for the analysis of the semiology of psychogenic non-epileptic seizures
    Moreira, Bernardo
    Vincentiis, Silvia
    Fiore, Lia
    Marchetti, Renato
    Valente, Kette
    [J]. EPILEPSIA, 2006, 47 : 280 - 281