Bayesian species distribution models integrate presence-only and presence-absence data to predict deer distribution and relative abundance

被引:13
|
作者
Morera-Pujol, Virginia [1 ]
Mostert, Philip S. [2 ]
Murphy, Kilian J. [1 ]
Burkitt, Tim [3 ]
Coad, Barry [4 ]
McMahon, Barry J. [5 ]
Nieuwenhuis, Maarten [6 ]
Morelle, Kevin [7 ,8 ]
Ward, Alastair I. [9 ]
Ciuti, Simone [1 ]
机构
[1] Univ Coll Dublin, Sch Biol & Environm Sci, Lab Wildlife Ecol & Behav, Dublin, Ireland
[2] Norwegian Univ Sci & Technol NTNU, Ctr Biodivers Dynam, Dept Math Sci, Trondheim, Norway
[3] Killarney Co, Kerry, Ireland
[4] Newtownmountkennedy Co, Coillte Forest, Dublin Rd, Coillte, Wicklow, Ireland
[5] Univ Coll Dublin, UCD Sch Agr & Food Sci, Belfield, Dublin, Ireland
[6] Univ Coll Dublin, Sch Agr & Food Sci, UCD Forestry, Dublin, Ireland
[7] Max Planck Inst Anim Behav, Dept Migrat, Radolfzell am Bodensee, Germany
[8] Czech Univ Life Sci, Dept Game Management & Wildlife Biol, Prague, Czech Republic
[9] Univ Leeds, Sch Biol, Leeds, England
关键词
Bayesian statistics; fallow deer; INLA; integrated species distribution models; red deer; sika deer; RED;
D O I
10.1111/ecog.06451
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Using geospatial data of wildlife presence to predict a species distribution across a geographic area is among the most common tools in management and conservation. The collection of high-quality presence-absence (PA) data through structured surveys is, however, expensive, and managers usually have access to larger amounts of low-quality presence-only (PO) data collected by citizen scientists, opportunistic observations and culling returns for game species. Integrated species distribution models (ISDMs) have been developed to make the most of the data available by combining the higher-quality, but usually scarcer and more spatially restricted, PA data with the lower-quality, unstructured, but usually more extensive PO datasets. Joint-likelihood ISDMs can be run in a Bayesian context using integrated nested laplace approximation methods that allow the addition of a spatially structured random effect to account for data spatial autocorrelation. Here, we apply this innovative approach to fit ISDMs to empirical data, using PA and PO data for the three prevalent deer species in Ireland: red, fallow and sika deer. We collated all deer data available for the past 15 years and fitted models predicting distribution and relative abundance at a 25 km(2) resolution across the island. Model predictions were associated to spatial estimate of uncertainty, allowing us to assess the quality of the model and the effect that data scarcity has on the certainty of predictions. Furthermore, we checked the performance of the three species-specific models using two datasets, independent deer hunting returns and deer densities based on faecal pellet counts. Our work clearly demonstrates the applicability of spatially explicit ISDMs to empirical data in a Bayesian context, providing a blueprint for managers to exploit unexplored and seemingly unusable data that can, when modelled with the proper tools, serve to inform management and conservation policies.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] PRESENCE-ONLY AND PRESENCE-ABSENCE DATA FOR COMPARING SPECIES DISTRIBUTION MODELING METHODS
    Elith, Jane
    Graham, Catherine
    Valavi, Roozbeh
    Abegg, Meinrad
    Bruce, Caroline
    Ford, Andrew
    Guisan, Antoine
    Hijmans, Robert J.
    Huettmann, Falk
    Lohmann, Lucia
    Loiselle, Bette
    Moritz, Craig
    Overton, Jake
    Peterson, A. Townsend
    Phillips, Steven
    Richardson, Karen
    Williams, Stephen
    Wiser, Susan K.
    Wohlgemuth, Thomas
    Zimmermann, Niklaus E.
    Ferrier, Simon
    BIODIVERSITY INFORMATICS, 2020, 15 (02) : 69 - 80
  • [2] Species Distribution Modelling: Contrasting presence-only models with plot abundance data
    Vitor H. F. Gomes
    Stéphanie D. IJff
    Niels Raes
    Iêda Leão Amaral
    Rafael P. Salomão
    Luiz de Souza Coelho
    Francisca Dionízia de Almeida Matos
    Carolina V. Castilho
    Diogenes de Andrade Lima Filho
    Dairon Cárdenas López
    Juan Ernesto Guevara
    William E. Magnusson
    Oliver L. Phillips
    Florian Wittmann
    Marcelo de Jesus Veiga Carim
    Maria Pires Martins
    Mariana Victória Irume
    Daniel Sabatier
    Jean-François Molino
    Olaf S. Bánki
    José Renan da Silva Guimarães
    Nigel C. A. Pitman
    Maria Teresa Fernandez Piedade
    Abel Monteagudo Mendoza
    Bruno Garcia Luize
    Eduardo Martins Venticinque
    Evlyn Márcia Moraes de Leão Novo
    Percy Núñez Vargas
    Thiago Sanna Freire Silva
    Angelo Gilberto Manzatto
    John Terborgh
    Neidiane Farias Costa Reis
    Juan Carlos Montero
    Katia Regina Casula
    Beatriz S. Marimon
    Ben-Hur Marimon
    Euridice N. Honorio Coronado
    Ted R. Feldpausch
    Alvaro Duque
    Charles Eugene Zartman
    Nicolás Castaño Arboleda
    Timothy J. Killeen
    Bonifacio Mostacedo
    Rodolfo Vasquez
    Jochen Schöngart
    Rafael L. Assis
    Marcelo Brilhante Medeiros
    Marcelo Fragomeni Simon
    Ana Andrade
    William F. Laurance
    Scientific Reports, 8
  • [3] Species Distribution Modelling: Contrasting presence-only models with plot abundance data
    Gomes, Vitor H. F.
    Ijff, Stephanie D.
    Raes, Niels
    Amaral, Ieda Leao
    Salomao, Rafael P.
    Coelho, Luiz de Souza
    de Almeida Matos, Francisca Dionizia
    Castilho, Carolina V.
    Lima Filho, Diogenes de Andrade
    Cardenas Lopez, Dairon
    Ernesto Guevara, Juan
    Magnusson, William E.
    Phillips, Oliver L.
    Wittmann, Florian
    Veiga Carim, Marcelo de Jesus
    Martins, Maria Pires
    Irume, Mariana Victoria
    Sabatier, Daniel
    Molino, Jean-Francois
    Banki, Olaf S.
    da Silva Guimaraes, Jose Renan
    Pitman, Nigel C. A.
    Fernandez Piedade, Maria Teresa
    Mendoza, Abel Monteagudo
    Luize, Bruno Garcia
    Venticinque, Eduardo Martins
    Moraes de Leao Novo, Evlyn Marcia
    Vargas, Percy Nunez
    Freire Silva, Thiago Sanna
    Manzatto, Angelo Gilberto
    Terborgh, John
    Costa Reis, Neidiane Farias
    Montero, Juan Carlos
    Casula, Katia Regina
    Marimon, Beatriz S.
    Marimon, Ben-Hur
    Honorio Coronado, Euridice N.
    Feldpausch, Ted R.
    Duque, Alvaro
    Zartman, Charles Eugene
    Arboleda, Nicolas Castano
    Killeen, Timothy J.
    Mostacedo, Bonifacio
    Vasquez, Rodolfo
    Schongart, Jochen
    Assis, Rafael L.
    Medeiros, Marcelo Brilhante
    Simon, Marcelo Fragomeni
    Andrade, Ana
    Laurance, William F.
    SCIENTIFIC REPORTS, 2018, 8
  • [4] Presence-only versus presence-absence data in species composition determinant analyses
    Kent, Rafi
    Carmel, Yohay
    DIVERSITY AND DISTRIBUTIONS, 2011, 17 (03) : 474 - 479
  • [5] Modelling distribution and abundance with presence-only data
    Pearce, Jennie L.
    Boyce, Mark S.
    JOURNAL OF APPLIED ECOLOGY, 2006, 43 (03) : 405 - 412
  • [6] Choosing presence-only species distribution models
    Leroy, Boris
    JOURNAL OF BIOGEOGRAPHY, 2023, 50 (01) : 247 - 250
  • [7] A comparison of joint species distribution models for presence-absence data
    Wilkinson, David P.
    Golding, Nick
    Guillera-Arroita, Gurutzeta
    Tingley, Reid
    McCarthy, Michael A.
    METHODS IN ECOLOGY AND EVOLUTION, 2019, 10 (02): : 198 - 211
  • [8] POC plots: calibrating species distribution models with presence-only data
    Phillips, Steven J.
    Elith, Jane
    ECOLOGY, 2010, 91 (08) : 2476 - 2484
  • [9] Pattern-recognition ecological niche models fit to presence-only and presence-absence data
    Maher, Sean P.
    Randin, Christophe F.
    Guisan, Antoine
    Drake, John M.
    METHODS IN ECOLOGY AND EVOLUTION, 2014, 5 (08): : 761 - 770
  • [10] Measuring and comparing the accuracy of species distribution models with presence-absence data
    Liu, Canran
    White, Matt
    Newell, Graeme
    ECOGRAPHY, 2011, 34 (02) : 232 - 243