Interplay of Pd ensemble sites induced by GaOx modification in boosting CO2 hydrogenation to formic acid

被引:29
|
作者
Mori, Kohsuke [1 ,2 ,3 ]
Hata, Hiroto [1 ]
Yamashita, Hiromi [1 ,2 ,3 ]
机构
[1] Osaka Univ, Grad Sch Engn, Div Mat & Mfg Sci, 2-1 Yamada-oka, Osaka 5650871, Japan
[2] Osaka Univ, Inst Open & Transdisciplinary Res Initiat OTRI, Innovat Catalysis Sci Div, Suita, Osaka 5650871, Japan
[3] Osaka Univ, Grad Sch Engn, 1-2 Yamadaoka, Osaka 5650871, Japan
基金
日本学术振兴会;
关键词
Surface engineering; Nanoparticle; Gallium oxide; Formic acid; Carbon dioxide; HOMOGENEOUS HYDROGENATION; SELECTIVE OXIDATION; STORAGE MATERIAL; NANOPARTICLES; CATALYST; SIZE; ALCOHOLS; SUPPORT;
D O I
10.1016/j.apcatb.2022.122022
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The interfacial modification of Pd nanoparticles supported on g-C3N4 (CN) was performed using highly dispersed amorphous MOx phase, where M represents Ga, Al, or B. The resulting Pd@MOx/CN exhibited enhanced activity in the hydrogenation of CO2 to yield formic acid. In particular, Pd@GaOx/CN displayed a maximum turnover number of 4540 based on the quantity of surface-exposed Pd atoms; this turnover number is more than six times higher than that of the unmodified catalyst. DFT calculations show that the presence of GaOx clusters on the Pd (111) surface produces the unique Pd ensemble sites, where electron-deficient Pd delta+ and electron-rich Pd delta- are adjacent. On the basis of kinetic and theoretical investigations, we propose a reasonable dual activation mechanism: the electron-deficient Pd delta+ species facilitates the adsorption of HCO3- ions, whereas the electron-rich Pd delta- species accelerates not only H-2 dissociation but also the attack of dissociated H atoms on C atoms in HCO3- ions.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Interplay of Pd Ensemble Sites Induced by Gaox Modification in Boosting Co2 Hydrogenation to Formic Acid
    Mori, Kohsuke
    Hata, Hiroto
    Yamashita, Hiromi
    SSRN, 2022,
  • [2] The superiority of Pd2+ in CO2 hydrogenation to formic acid
    Wang, Yanyan
    Dong, Minghua
    Li, Shaopeng
    Chen, Bingfeng
    Liu, Huizhen
    Han, Buxing
    CHEMICAL SCIENCE, 2024, 15 (15) : 5525 - 5530
  • [3] Reaction-driven selective CO2 hydrogenation to formic acid on Pd(111)
    Zhang, Hong
    Wang, Xuelong
    Liu, Ping
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (28) : 16997 - 17003
  • [4] CO2 hydrogenation to formic acid on Pd-Cu nanoclusters: a DFT study
    Chattaraj, D.
    Majumder, C.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (03) : 2584 - 2594
  • [5] CO2 hydrogenation to formic acid on Ni(110)
    Peng, Guowen
    Sibener, S. J.
    Schatz, George C.
    Mavrikakis, Manos
    SURFACE SCIENCE, 2012, 606 (13-14) : 1050 - 1055
  • [6] CARBON SEQUESTRATION: HYDROGENATION OF CO2 TO FORMIC ACID
    Upadhyay, Praveenkumar
    Srivastava, Vivek
    PRESENT ENVIRONMENT AND SUSTAINABLE DEVELOPMENT, 2016, 10 (02) : 13 - 34
  • [7] CO2 Hydrogenation to Formic Acid on Ni(111)
    Peng, Guowen
    Sibener, S. J.
    Schatz, George C.
    Ceyer, Sylvia T.
    Mavrikakis, Manos
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (04): : 3001 - 3006
  • [8] Pd@TiO2/carbon nanohorn electrocatalysts: reversible CO2 hydrogenation to formic acid
    Melchionna, M.
    Bracamonte, M. V.
    Giuliani, A.
    Nasi, L.
    Montini, T.
    Tavagnacco, C.
    Bonchio, M.
    Fornasiero, P.
    Prato, M.
    ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (06) : 1571 - 1580
  • [9] Hydrogenation of CO2 to formic acid in the presence of the Wilkinson complex
    N. N. Ezhova
    N. V. Kolesnichenko
    A. V. Bulygin
    E. V. Slivinskii
    S. Han
    Russian Chemical Bulletin, 2002, 51 : 2165 - 2169
  • [10] Hydrogenation of CO2 to formic acid on ruthenium hydroxide catalysts
    Wang, Shengping
    Hao, Cuiying
    Li, Maoshuai
    Kang, Liqiong
    Na, Ping
    Ma, Xinbin
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 240