ON THE GLOBAL WELL-POSEDNESS AND ANALYTICITY OF SOME ELECTRODIFFUSION MODELS IN IDEAL FLUIDS AND POROUS MEDIA

被引:3
|
作者
Abdo, Elie [1 ]
Lee, Fizay-noah [2 ]
Wang, Weinan [3 ]
机构
[1] Univ Calif Santa Barbara, Dept Math, St Barbara, CA 93106 USA
[2] Vanderbilt Univ, Dept Math, Nashville, TN 37240 USA
[3] Univ Oklahoma, Dept Math, Norman, OK 73019 USA
关键词
Nernst-Planck; Euler; analyticity; NAVIER-STOKES; EULER; EQUATIONS;
D O I
10.1137/23M1558859
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Nernst-Planck equations describing the nonlinear time evolution of multiple ionic concentrations in a two-dimensional incompressible fluid. The velocity of the fluid evolves according to either the Euler or Darcy's equations, both forced nonlinearly by the electric forces generated by the presence of charged ions. We address the global well-posedness and Gevrey regularity of the resulting electrodiffusion models in the periodic setting.
引用
收藏
页码:6838 / 6866
页数:29
相关论文
共 50 条
  • [1] On the Well-Posedness of Some Problems of Filtration in Porous Media
    Nebolsina, M. N.
    Al Khazraji, S. H. M.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2014, 7 (03): : 60 - 68
  • [2] Global well-posedness for second grade fluids
    Clark, H. R.
    Friz, L.
    Rojas-Medar, M.
    ANALYSIS AND APPLICATIONS, 2025, 23 (02) : 169 - 192
  • [3] On the well-posedness of the incompressible flow in porous media
    Xu, Fuyi
    Liu, Lishan
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (12): : 6371 - 6381
  • [4] GLOBAL WELL-POSEDNESS OF A 3D MHD MODEL IN POROUS MEDIA
    Titi, Edriss S.
    Trabelsi, Saber
    JOURNAL OF GEOMETRIC MECHANICS, 2019, 11 (04): : 621 - 637
  • [5] Global well-posedness of incompressible flow in porous media with critical diffusion in Besov spaces
    Yuan, Baoquan
    Yuan, Jia
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (11) : 4405 - 4422
  • [6] Local well-posedness and global analyticity for solutions of a generalized 0-equation
    da Silva, Priscila L.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2023, 153 (05) : 1630 - 1650
  • [7] Global well-posedness for incompressible flow in porous media with partial diffusion or fractional diffusion
    Guo, Yana
    Shang, Haifeng
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2019, 99 (06):
  • [8] Global Well-Posedness for Compressible Viscoelastic Fluids near Equilibrium
    Jianzhen Qian
    Zhifei Zhang
    Archive for Rational Mechanics and Analysis, 2010, 198 : 835 - 868
  • [9] Dispersive effect and global well-posedness of the compressible viscoelastic fluids
    Han, Bin
    Zi, Ruizhao
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (11) : 9254 - 9296
  • [10] Global Well-Posedness for Compressible Viscoelastic Fluids near Equilibrium
    Qian, Jianzhen
    Zhang, Zhifei
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 198 (03) : 835 - 868