A higher-order porous thermoelastic problem with microtemperatures

被引:1
|
作者
Fernandez, J. R. [1 ]
Quintanilla, R. [2 ]
机构
[1] Univ Vigo, Dept Appl Math 1, ETSI Telecomunicac, Campus Lagoas Marcosende S-N, Vigo 36310, Spain
[2] Univ Politecn Cataluna, Dept Math, Terrassa 08222, Barcelona, Spain
关键词
higher order; thermoelasticity; microtemperature; logarithmic convexity method; existence and uniqueness; O414.1; HEAT-CONDUCTION; UNIFIED PROCEDURE; DEFORMABLE MEDIA; CONSTRUCTION; STABILITY; THERMODYNAMICS; CONTINUUM; EQUATIONS; BODIES; MODEL;
D O I
10.1007/s10483-023-3049-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a porous thermoelastic problem with microtemperatures assuming parabolic higher order in time derivatives for the thermal variables. The model is derived and written as a coupled linear system. Then, a uniqueness result is proved by using the logarithmic convexity method in the case that we do not assume that the mechanical energy is positive definite. Finally, the existence of the solution is obtained by introducing an energy function and applying the theory of linear semigroups.
引用
收藏
页码:1911 / 1926
页数:16
相关论文
共 50 条
  • [1] A higher-order porous thermoelastic problem with microtemperatures
    J. R. Fernández
    R. Quintanilla
    [J]. Applied Mathematics and Mechanics, 2023, 44 : 1911 - 1926
  • [2] A higher-order porous thermoelastic problem with microtemperatures
    J.R.FERNáNDEZ
    R.QUINTANILLA
    [J]. Applied Mathematics and Mechanics(English Edition), 2023, 44 (11) : 1911 - 1926
  • [3] A porous thermoelastic problem with microtemperatures
    Fernandez, J. R.
    Masid, M.
    [J]. JOURNAL OF THERMAL STRESSES, 2017, 40 (02) : 145 - 166
  • [4] A dual-phase-lag porous-thermoelastic problem with microtemperatures
    Bazarra, N.
    Fernandez, J. R.
    Quintanilla, R.
    [J]. ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (04): : 1236 - 1262
  • [5] A thermoelastic problem with diffusion, microtemperatures, and microconcentrations
    Bazarra, Noelia
    Campo, Marco
    Fernandez, Jose R.
    [J]. ACTA MECHANICA, 2019, 230 (01) : 31 - 48
  • [6] A thermoelastic problem with diffusion, microtemperatures, and microconcentrations
    Noelia Bazarra
    Marco Campo
    José R. Fernández
    [J]. Acta Mechanica, 2019, 230 : 31 - 48
  • [7] A contact problem of a thermoelastic rod with voids and microtemperatures
    Berti, Alessia
    Naso, Maria Grazia
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2017, 97 (06): : 670 - 685
  • [8] Exponential Stability for a Thermoelastic Porous System with Microtemperatures Effects
    Khochemane, Houssem Eddine
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2021, 173 (01)
  • [9] Exponential Stability for a Thermoelastic Porous System with Microtemperatures Effects
    Houssem Eddine Khochemane
    [J]. Acta Applicandae Mathematicae, 2021, 173
  • [10] The problem of higher-order misrepresentation
    Peebles, Graham
    [J]. PHILOSOPHICAL PSYCHOLOGY, 2022, 35 (06) : 842 - 861