Inextensible Flows of Null Cartan Curves in Minkowski Space R2,1

被引:1
|
作者
Gaber, Samah [1 ,2 ]
Elaiw, Abeer Al [1 ]
机构
[1] King Faisal Univ, Coll Sci, Dept Math & Stat, Al Hasa 31982, Saudi Arabia
[2] Assiut Univ, Fac Sci, Dept Math, Assiut 71516, Egypt
关键词
inextensible flows; evolution of curves; motion of curves; null Cartan curves; time evolution equations; CURVATURE; PARTICLES; EVOLUTION; SURFACES; MODELS; WAVES;
D O I
10.3390/universe9030125
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This research focused on studying the flows of a null Cartan curve specified by the velocity and acceleration fields. We have proven that the tangential and normal velocities are influenced by the binormal velocity along the motion. The velocity fields are used to drive the time evolution equations for the Cartan frame and the torsion of the null curve. The objective of this work is to construct a family of inextensible null Cartan curves from the flows of the initial null Cartan curve. The surface formed by this family of inextensible flows of the null Cartan curve is obtained numerically and visualized. In this paper, we refer to the surface traced out by the family of the null Cartan curve as the generated or constructed surface. We present a novel model for the inextensible null Cartan curve, which moves with a constant binormal velocity to describe the process of constructing a family of null Cartan curves. Through this model, the time evolution equation for the torsion of the inextensible null Cartan curve arises as the Korteweg-de Vries (K-dV) equation, and we obtain and visualize the soliton solutions. The soliton solutions represent the torsion of the family of null Cartan curves at various time values. We construct the family of inextensible null Cartan curves and visualize the generated surface. In addition, we investigate the flows of inextensible null Cartan curves specified by acceleration fields, and we obtain the explicit relationships between the acceleration and velocity functions. Finally, we provide an application for the inextensible flows of the null Cartan curve with constant normal acceleration.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Evolution of null Cartan and pseudo null curves via the Bishop frame in Minkowski space R2,1
    Gaber, Samah
    Al Elaiw, Abeer
    AIMS MATHEMATICS, 2025, 10 (02): : 3691 - 3709
  • [2] The Geometry of the Inextensible Flows of Timelike Curves according to the Quasi-Frame in Minkowski Space R2,1
    Gaber, Samah
    Sorour, Adel H.
    SYMMETRY-BASEL, 2023, 15 (03):
  • [3] ON CARTAN NULL BERTRAND CURVES IN MINKOWSKI 3-SPACE
    Gokcek, Fatma
    Erdem, Hatice Altin
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2021, 36 (05): : 1079 - 1088
  • [4] Null cartan geodesic isophote curves in Minkowski 3-space
    Li, Zewen
    Pei, Donghe
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2024, 21 (07)
  • [5] Involutes of null Cartan curves and their representations in Minkowski 3-space
    Jinhua Qian
    Mingyu Sun
    Bo Zhang
    Soft Computing, 2023, 27 : 13753 - 13764
  • [6] Involutes of null Cartan curves and their representations in Minkowski 3-space
    Qian, Jinhua
    Sun, Mingyu
    Zhang, Bo
    SOFT COMPUTING, 2023, 27 (19) : 13753 - 13764
  • [7] On the Bishop frames of pseudo null and null Cartan curves in Minkowski 3-space
    Grbovic, Milica
    Nesovic, Emilija
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 461 (01) : 219 - 233
  • [8] New results concerning Cartan null and pseudo null curves in Minkowski 3-space
    Camci, Cetin
    Ucum, Ali
    Ilarslan, Kazim
    JOURNAL OF GEOMETRY, 2023, 114 (02)
  • [9] New results concerning Cartan null and pseudo null curves in Minkowski 3-space
    Çetin Camci
    Ali Uçum
    Kazım İlarslan
    Journal of Geometry, 2023, 114
  • [10] Singularities of Focal Surfaces of Null Cartan Curves in Minkowski 3-Space
    Wang, Zhigang
    Pei, Donghe
    Chen, Liang
    Kong, Lingling
    Han, Qixing
    ABSTRACT AND APPLIED ANALYSIS, 2012,