Detection of obstructive sleep apnea from single-channel ECG signals using a CNN-transformer architecture

被引:23
|
作者
Liu, Hang [1 ,2 ,4 ]
Cui, Shaowei [1 ,2 ,4 ]
Zhao, Xiaohui [3 ]
Cong, Fengyu [1 ,2 ,4 ]
机构
[1] Dalian Univ Technol, Fac Med, Sch Biomed Engn, Dalian, Peoples R China
[2] Dalian Univ Technol, Liaoning Key Lab Integrated Circuit & Biomed Elect, Dalian, Peoples R China
[3] Dalian Municipal Cent Hosp, Dept Resp & Crit Care Med, Dalian, Peoples R China
[4] Univ Jyvaskyla, Fac Informat Technol, Jyvaskyla, Finland
关键词
Obstructive sleep apnea; ECG; Transformer; Deep learning; AUTOMATIC DETECTION; ALGORITHM;
D O I
10.1016/j.bspc.2023.104581
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Obstructive sleep apnea (OSA) is a sleep breathing disorder that can seriously affect the health of patients. The manual diagnostic of OSA through the Polysomnography (PSG) recordings is time-consuming and tedious. Electrocardiogram (ECG) signals have been an alternative for OSA detection. This paper proposes a CNN -Transformer architecture for automatic OSA detection based on single-channel ECG signals. The proposed architecture has two fundamental parts. The first part has the aim of learning a feature representation from ECG signals by using the CNN. The second part consists mainly of the Transformer, a model structure built solely with self-attention mechanism, which is used to model the global temporal context and to perform classification tasks. The effectiveness of the proposed method was validated on Apnea-ECG dataset. The dataset consists of 70 ECG recordings with an annotation for each minute of each recording. The current and adjacent 1-min epochs were combined to form the 3-min input epoch. Besides, experiments were set up with different baseline deep learning models for sequence modeling to verify their effects on classification performance. The per -segment classification accuracy reached 88.2% and the area under the receiver operating characteristic curve (AUC) was 0.95. The per-recording classification accuracy reached 100% and the mean absolute error (MAE) was 4.33. Experimental results demonstrate that the Transformer structure and a 3-min input time window both effectively improve the classification performance. The proposed method can accurately detect OSA from single-channel ECG signals and provides a promising and reliable solution for home portable detection of OSA.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Deep Learning Approaches for Early Detection of Obstructive Sleep Apnea Using Single-Channel ECG: A Systematic Literature Review
    Singh, Nivedita
    Talwekar, R. H.
    BIOMEDICAL ENGINEERING SCIENCE AND TECHNOLOGY, ICBEST 2023, 2024, 2003 : 117 - 130
  • [2] Prediction of Sleep Apnea Events Using a CNN-Transformer Network and Contactless Breathing Vibration Signals
    Chen, Yuhang
    Yang, Shuchen
    Li, Huan
    Wang, Lirong
    Wang, Bidou
    BIOENGINEERING-BASEL, 2023, 10 (07):
  • [3] Detection of sleep apnea from single-channel electroencephalogram (EEG) using an explainable convolutional neural network (CNN)
    Barnes, Lachlan D.
    Lee, Kevin
    Kempa-Liehr, Andreas W.
    Hallum, Luke E.
    PLOS ONE, 2022, 17 (09):
  • [4] Single Channel ECG for Obstructive Sleep Apnea Severity Detection Using a Deep Learning Approach
    Banluesombatkul, Nannapas
    Rakthanmanon, Thanawin
    Wilaiprasitporn, Theerawit
    PROCEEDINGS OF TENCON 2018 - 2018 IEEE REGION 10 CONFERENCE, 2018, : 2011 - 2016
  • [5] Automatic identification of sleep and wakefulness using single-channel EEG and respiratory polygraphy signals for the diagnosis of obstructive sleep apnea
    Sabil, AbdelKebir
    Vanbuis, Jade
    Baffet, Guillaume
    Feuilloy, Mathieu
    Le Vaillant, Marc
    Meslier, Nicole
    Gagnadoux, Frederic
    JOURNAL OF SLEEP RESEARCH, 2019, 28 (02)
  • [6] Analysis of Obstructive Sleep Apnea using ECG Signals
    Jayanthy, A. K.
    Somanathan, Subhiksha
    Yeshwant, Shivani
    2020 SIXTH INTERNATIONAL CONFERENCE ON BIO SIGNALS, IMAGES, AND INSTRUMENTATION (ICBSII), 2020,
  • [7] SleepZzNet: Sleep Stage Classification Using Single-Channel EEG Based on CNN and Transformer
    Chen, Huiyu
    Yin, Zhigang
    Zhang, Peng
    Liu, Panfei
    INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 2021, 168 : S167 - S167
  • [8] Automatic Sleep Staging in Patients With Obstructive Sleep Apnea Using Single-Channel Frontal EEG
    Lee, Pei-Lin
    Huang, Yi-Hao
    Lin, Po-Chen
    Chiao, Yu-An
    Hou, Jen-Wen
    Liu, Hsiang-Wen
    Huang, Ya-Ling
    Liu, Yu-Ting
    Chiueh, Tzi-Dar
    JOURNAL OF CLINICAL SLEEP MEDICINE, 2019, 15 (10): : 1411 - 1420
  • [9] An Obstructive Sleep Apnea Detection Approach Using a Discriminative Hidden Markov Model From ECG Signals
    Song, Changyue
    Liu, Kaibo
    Zhang, Xi
    Chen, Lili
    Xian, Xiaochen
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2016, 63 (07) : 1532 - 1542
  • [10] ApneaNet: A hybrid 1DCNN-LSTM architecture for detection of Obstructive Sleep Apnea using digitized ECG signals
    Srivastava, Gaurav
    Chauhan, Aninditaa
    Kargeti, Nitigya
    Pradhan, Nitesh
    Dhaka, Vijaypal Singh
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 84