Combined Finite-Discrete element method for parameter identification of structures

被引:1
|
作者
Bravo, R. [1 ]
Perez-Aparicio, J. L. [2 ]
机构
[1] Univ Granada, Dept Struct Mech & Hydraul Engn Campus Fuentenueva, Campus Fuentenueva S-N, Granada 18071, Spain
[2] Univ Politecn Valencia, Dept Continuum Mech & Struct, Camino Vera S-N, Valencia 46022, Spain
关键词
Masonry structures; Combined Finite-Discrete element method; Genetic algorithm; Inverse problem; Parameter identification; DISCONTINUOUS NUMERICAL-ANALYSIS; MASONRY; FRAMEWORK; MODEL;
D O I
10.1016/j.conbuildmat.2023.132297
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Masonry structures are constructions made of discontinuous blocks that require unique numerical methods incorporating contact, friction, and cohesion models for their analysis. Given the large number of aging structures of this type still in use, there is a demand to combine these numerical methods with optimization algorithms to help in structural health monitoring. This paper combines discrete and finite methods with genetic algorithms for parametrizing two masonry structures. The first is a bridge with a large number of blocks, the material properties of which are estimated with a small error. Since the loads are low, the mortar's properties are irrelevant. The second is a buried ogival vault; starting from only four pieces of experimental data from the literature and related with the failure loads, the material and contact properties are calculated. From them, many other failure loads are again iteratively calculated and favorably compared with the rest of the data. To further validate the inverse problem, the computed properties are used for several runs of the same vault but under different loads, obtaining again an almost perfect agreement with the experiments.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Nonlinear analysis of engineering structures by combined finite-discrete element method
    Smoljanovic, Hrvoje
    Zivaljic, Nikolina
    Nikolic, Zeljana
    [J]. GRADEVINAR, 2013, 65 (04): : 331 - 344
  • [2] A novel joint element parameter calibration procedure for the combined finite-discrete element method
    Deng, Penghai
    Liu, Quansheng
    Lu, Haifeng
    [J]. ENGINEERING FRACTURE MECHANICS, 2022, 276
  • [3] HOSS: an implementation of the combined finite-discrete element method
    Knight, Earl E.
    Rougier, Esteban
    Lei, Zhou
    Euser, Bryan
    Chau, Viet
    Boyce, Samuel H.
    Gao, Ke
    Okubo, Kurama
    Froment, Marouchka
    [J]. COMPUTATIONAL PARTICLE MECHANICS, 2020, 7 (05) : 765 - 787
  • [4] Structural applications of the combined finite-discrete element method
    Munjiza, Ante
    Smoljanovic, Hrvoje
    Zivaljic, Nikolina
    Mihanovic, Ante
    Divic, Vladimir
    Uzelac, Ivana
    Nikolic, Zeljana
    Balic, Ivan
    Trogrlic, Boris
    [J]. COMPUTATIONAL PARTICLE MECHANICS, 2020, 7 (05) : 1029 - 1046
  • [5] HOSS: an implementation of the combined finite-discrete element method
    Earl E. Knight
    Esteban Rougier
    Zhou Lei
    Bryan Euser
    Viet Chau
    Samuel H. Boyce
    Ke Gao
    Kurama Okubo
    Marouchka Froment
    [J]. Computational Particle Mechanics, 2020, 7 : 765 - 787
  • [6] RECENT DEVELOPMENT IN THE COMBINED FINITE-DISCRETE ELEMENT METHOD
    Rougier, Esteban
    Knight, Earl E.
    Lei, Zhou
    Munjiza, Antonio
    [J]. PROCEEDINGS OF THE 1ST PAN-AMERICAN CONGRESS ON COMPUTATIONAL MECHANICS AND XI ARGENTINE CONGRESS ON COMPUTATIONAL MECHANICS, 2015, : 101 - 111
  • [7] Combined finite-discrete element method modeling of rockslides
    Zhou, Wei
    Yuan, Wei
    Ma, Gang
    Chang, Xiao-Lin
    [J]. ENGINEERING COMPUTATIONS, 2016, 33 (05) : 1530 - 1559
  • [8] Combined Finite-Discrete Element Method for Simulation of Hydraulic Fracturing
    Yan, Chengzeng
    Zheng, Hong
    Sun, Guanhua
    Ge, Xiurun
    [J]. ROCK MECHANICS AND ROCK ENGINEERING, 2016, 49 (04) : 1389 - 1410
  • [9] A model for thin shells in the combined finite-discrete element method
    Uzelac, Ivana
    Smoljanovic, Hrvoje
    Batinic, Milko
    Peros, Bernardin
    Munjiza, Ante
    [J]. ENGINEERING COMPUTATIONS, 2018, 35 (01) : 377 - 394
  • [10] The combined finite-discrete element method for structural failure and collapse
    Munjiza, A
    Bangash, T
    John, NWM
    [J]. ENGINEERING FRACTURE MECHANICS, 2004, 71 (4-6) : 469 - 483